• M F Zaki

      Articles written in Pramana – Journal of Physics

    • Single-sheet identification method of heavy charged particles using solid state nuclear track detectors

      M F Zaki A Abdel-Naby A Ahmed Morsy

      More Details Abstract Fulltext PDF

      The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as 93Nb, 86Kr and 4He in CR-39 and 4He and 132Xe in CN-85 polycarbonate have been determined. The ranges of these ions in these detectors have also been computed theoretically using the Henke–Benton program. A reasonably good agreement has been observed between the experimentally and theoretically computed values.

    • Particularization of alpha contamination using CR-39 track detectors

      M F Zaki Y H El-Shaer

      More Details Abstract Fulltext PDF

      Solid-state nuclear track detectors have found wide use in various domains of science and technology, e.g. in environmental experiments. The measurement of alpha activity on sources in an environment, such as air is not easy because of short penetration range of alpha particles. Furthermore, measurement of alpha activity by most gas ionization detectors suffers from high background induced by the accompanying gamma radiation. Solid state nuclear track detectors (SSNTDs) have been used successfully as detecting devices and as a passive system to detect alpha contamination on different surfaces. This work presents the response of CR-39 (for two types) to alpha particles from two sources, 238Pu with energy 5 MeV and 241Am with energy 5.4 MeV. The methods of etching and counting are investigated, along with the achievable linearity, efficiency and reproducibility. The sensitivity to low activity and energy resolution are studied.

    • Neutron response study using poly allyl diglycol carbonate

      Basma A El-Badry M F Zaki Tarek M Hegazy A Ahmed Morsy

      More Details Abstract Fulltext PDF

      The results of an experimental work aimed at improving the performance of the CR-39 nuclear track detector for neutron dosimetry applications are reported. A set of CR-39 plastic detectors was exposed to 252Cf neutron source, which has the emission rate of $0.68 \times 10^{8}$ s-1, and neutron dose equivalent rate 1 m apart from the source is equal to 3.8 mrem/h. The detection of fast neutrons performed with CR-39 detector foils, subsequent chemical etching and evaluation of the etched tracks by an automatic track counting system was studied. It is found that the track density increases with the increase of neutron dose and etching time. The track density in the detector is directly proportional to the neutron fluence producing the recoil tracks, provided the track density is in the countable range. This fact plays an important role in determining the equivalent dose in the field of neutron dosimetry. These results are compared with previous work. It is found that our results are in good agreement with their investigations.

    • Simulated nucleon–nucleon and nucleon–nucleus reactions in the frame of the cascade exciton model at high and intermediate energies

      A Abdel-Hafiez Shaker El-Shater M F Zaki

      More Details Abstract Fulltext PDF

      In this study, we have used the cascade exciton model (CEM) to investigate different characteristics of nuclear reactions. Number of nucleon–nucleon collisions in Pb+Pb collisions as a function of impact parameter and rapidity distributions of negative particles from p+Ar and p+Xe interactions at 𝑝lab = 200 GeV/c have been studied. We could create inclusive spectra of pions for separate charged states from reactions and total neutron multiplicities per primary reaction at 1000 MeV for different thin targets. Also, cross-sections for the reactions 209Bi(p, f) and 209Bi(n, f) were studied. Interactions of 1.0 GeV protons with C, Al, Cu, Sn, and Pb are presented in this study. All the calculated characteristics are compared with other theoretical calculations and compared with the experimental data. CEM shows good agreement with both theoretical and experimental results. In this study, we have used quantum molecular dynamic (QMD) as a theoretical model to compare our results.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.