• Ling-Feng Mao

      Articles written in Pramana – Journal of Physics

    • Effects of quantum coupling on the performance of metal-oxide-semiconductor field transistors

      Ling-Feng Mao

      More Details Abstract Fulltext PDF

      Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled Schrödinger–Poisson equations with the finite-difference method. The results show that the quantum coupling between the transverse and the longitudinal components of the electron motion can largely affect device performance. It suggests that the quantum coupling effect should be considered for the performance of a ballistic MOSFET due to the high injection velocity of the channel electron.

    • Mismatch of dielectric constants at the interface of nanometer metal-oxide-semiconductor devices with high-𝐾 gate dielectric impacts on the inversion charge density

      Ling-Feng Mao

      More Details Abstract Fulltext PDF

      The comparison of the inversion electron density between a nanometer metal-oxidesemiconductor (MOS) device with high-𝐾 gate dielectric and a SiO2 MOS device with the same equivalent oxide thickness has been discussed. A fully self-consistent solution of the coupled Schrödinger–Poisson equations demonstrates that a larger dielectric-constant mismatch between the gate dielectric and silicon substrate can reduce electron density in the channel of a MOS device under inversion bias. Such a reduction in inversion electron density of the channel will increase with increase in gate voltage. A reduction in the charge density implies a reduction in the inversion electron density in the channel of a MOS device. It also implies that a larger dielectric constant of the gate dielectric might result in a reduction in the source–drain current and the gate leakage current.

    • Quantum capacitance of the armchair-edge graphene nanoribbon

      Ling-Feng Mao

      More Details Abstract Fulltext PDF

      The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance oscillations are found and these capacitance oscillations originate from the lateral quantum confinement in graphene nanoribbon. Detailed studies of the capacitance oscillations demonstrate that the local channel electrostatic potential at the capacitance peak, the height and the number of the capacitance peak strongly depend on the width, especially a few nanometres, of the armchair-edge graphene nanoribbon. It implies that the capacitance oscillations observed in the experiments can be utilized to measure the width of graphene nanoribbon. The results also show that the capacitance oscillations are not seen when the width is larger than 30 nm.

  • Pramana – Journal of Physics | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.