• Kavita Jain

      Articles written in Pramana – Journal of Physics

    • Locating the minimum: Approach to equilibrium in a disordered, symmetric zero range process

      Mustansir Barma Kavita Jain

      More Details Abstract Fulltext PDF

      We consider the dynamics of the disordered, one-dimensional, symmetric zero range process in which a particle from an occupied site k hops to its nearest neighbor with a quenched rate w(k). These rates are chosen randomly from the probability distribution f(w) ∼ (wc)n, where c is the lower cutoff. For n>0, this model is known to exhibit a phase transition in the steady state from a low density phase with a finite number of particles at each site to a high density aggregate phase in which the site with the lowest hopping rate supports an infinite number of particles. In the latter case, it is interesting to ask how the system locates the site with globally minimum rate. We use an argument based on the local equilibrium, supported by Monte Carlo simulations, to describe the approach to the steady state. We find that at large enough time, regions with a smooth density profile are described by a diffusion equation with site-dependent rates, while the isolated points where the mass distribution is singular act as the boundaries of these regions. Our argument implies that the relaxation time scales with the system size L as Lz with z = 2 + 1/(n + 1) for n>1 and suggests a different behavior for n<1.

    • Adaptation dynamics of the quasispecies model

      Kavita Jain

      More Details Abstract Fulltext PDF

      We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen’s model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a quasispecies which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or step-like) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.