K Rani
Articles written in Pramana – Journal of Physics
Volume 55 Issue 3 September 2000 pp L471-L478 Rapid Communication
B Mukherjee S Muralithar R P Singh R Kumar K Rani S C Pancholi R K Bhowmik
Excited states of 63Cu were populated via the $^{52}{\rm Cr} + {}^{16}{\rm O}$ (65 MeV) reaction using the gamma detector array equipped with charged particle detector array for reaction channel separation. On the basis of $\gamma-\gamma$ coincidence relations and angular distribution ratios, a level scheme was constructed up to $E_{x} = 7$ MeV and $J^{\pi} = 23/2^{(+)}$. The decay scheme deduced was interpreted in terms of shell model calculations, with a restricted basis of the $f_{5/2}$, $p_{3/2}$, $p_{1/2}$, $g_{9/2}$ orbitals outside a $^{56}_{28}$Ni core.
Volume 75 Issue 2 August 2010 pp 317-331 Accelerators and Instrumentation for Nuclear Physics
Hybrid recoil mass analyzer at IUAC – First results using gas-filled mode and future plans
N Madhavan S Nath T Varughese J Gehlot A Jhingan P Sugathan A K Sinha R Singh K M Varier M C Radhakrishna E Prasad S Kalkal G Mohanto J J Das Rakesh Kumar R P Singh S Muralithar R K Bhowmik A Roy Rajesh Kumar S K Suman A Mandal T S Datta J Chacko A Choudhury U G Naik A J Malyadri M Archunan J Zacharias S Rao Mukesh Kumar P Barua E T Subramanian K Rani B P Ajith Kumar K S Golda
Hybrid recoil mass analyzer (HYRA) is a unique, dual-mode spectrometer designed to carry out nuclear reaction and structure studies in heavy and medium-mass nuclei using gas-filled and vacuum modes, respectively and has the potential to address newer domains in nuclear physics accessible using high energy, heavy-ion beams from superconducting LINAC accelerator (being commissioned) and ECR-based high current injector system (planned) at IUAC. The first stage of HYRA is operational and initial experiments have been carried out using gas-filled mode for the detection of heavy evaporation residues and heavy quasielastic recoils in the direction of primary beam. Excellent primary beam rejection and transmission efficiency (comparable with other gas-filled separators) have been achieved using a smaller focal plane detection system. There are plans to couple HYRA to other detector arrays such as Indian national gamma array (INGA) and $4\pi$ spin spectrometer for ER tagged spectroscopic/spin distribution studies and for focal plane decay measurements.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.