JUN LIU
Articles written in Pramana – Journal of Physics
Volume 83 Issue 4 October 2014 pp 473-480 Research Articles
Inclined periodic homoclinic breather and rogue waves for the (1+1)-dimensional Boussinesq equation
Zhengde Dai Chuanjian Wang Jun Liu
A new method, homoclinic (heteroclinic) breather limit method (HBLM), for seeking rogue wave solution to nonlinear evolution equation (NEE) is proposed. (1+1)-dimensional Boussinesq equation is used as an example to illustrate the effectiveness of the suggested method. Rational homoclinic wave solution, a new family of two-wave solution, is obtained by inclined periodic homoclinic breather wave solution and is just a rogue wave solution. This result shows that rogue wave originates by the extreme behaviour of homoclinic breather wave in (1+1)-dimensional nonlinear wave fields.
Volume 94 All articles Published: 30 January 2020 Article ID 0036 Research Article
A lump-type solution of the (2 + 1)-dimensional generalised fifth-order Korteweg–de Vries (KdV) equation is obtained from the two-soliton solution by applying the parametric limit method. Some theorems and corollaries about the superposition behaviour between lump solutions and different forms of $N$-soliton ($N \rightarrow\infty$) solutions are constructed, and detailed proofs are given. Besides,we give a large number of examples and spatial evolution graphics to illustrate the effectiveness of the described theorems and corollaries. Some new nonlinear phenomena and superposition behaviour, such as rational-exponential type, rational-cosh-cos type, rational-sin type, rational-logarithmic type etc., are simulated and shown for the first time. Finally, we also illustrate the superposition between high-order lump-type solutions and $N$-soliton solutions.
Volume 94, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.