Articles written in Pramana – Journal of Physics

    • A study of fractional Schrödinger equation composed of Jumarie fractional derivative


      More Details Abstract Fulltext PDF

      In this paper we have derived the fractional-order Schrödinger equation composed of Jumarie fractional derivative. The solution of this fractional-order Schrödinger equation is obtained in terms of Mittag–Leffler function with complex arguments, and fractional trigonometric functions. A few important properties of the fractional Schrödinger equation are then described for the case of particles in one-dimensional infinite potential well. One of the motivations for using fractional calculus in physical systems is that the space and time variables, which we often deal with, exhibit coarse-grained phenomena. This means infinite simal quantities cannot be arbitrarily taken to zero – rather they are non-zero with a minimum spread. This type of non-zero spread arises in the microscopic to mesoscopic levels of system dynamics, which means that, if we denote x as the point in space and t as the point in time, then limit of the differentials dx (and dt ) cannot be taken as zero. To take the concept of coarse graining into account, use the infinite simal quantities as $(\Delta x)^\alpha$ (and $(\Delta t)^\alpha$) with 0 < $\alpha$ < 1; called as ‘fractional differentials’. For arbitrarily small $\Delta x$ and $\Delta t$ (tending towards zero), these ‘fractional’ differentials are greaterthan $\Delta x$ (and $\Delta t$), i.e. $(\Delta x)^\alpha$ > $\Delta x$ and $(\Delta t)^\alpha$ > $\Delta t$. This way of defining the fractional differentials helps us to use fractional derivatives in the study of dynamic systems.

    • Fractional Klein–Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter


      More Details Abstract Fulltext PDF

      Klein–Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein–Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein–Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein–Gordon equation, we can overcome the problem. The fractional Klein–Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.