J Kohlbrecher
Articles written in Pramana – Journal of Physics
Volume 63 Issue 2 August 2004 pp 339-343
PEO—PPO—PEO triblock copolymer P85 [(EO)26(PO)39(EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering measurements show that triblock copolymer forms mixed micelles with detergent and the mixing of two components in the mixed micelles is uniform.
Volume 71 Issue 4 October 2008 pp 877-885 Invited Papers
Small-angle neutron scattering study of structural evolution of different phases in protein solution
V K Aswal S Chodankar J Kohlbrecher R Vavrin A G Wagh
Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein{surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.
Volume 71 Issue 5 November 2008 pp 1015-1019 Small Angle Neutron Scattering
SMARTer for magnetic structure studies
E G R Putra A Ikram J Kohlbrecher
SMARTer, a 36-meter small angle neutron scattering (SANS) spectrometer was installed at the Neutron Scattering Laboratory (NSL), National Nuclear Energy Agency of Indonesia – BATAN in Serpong, Indonesia and has performed the experiment for studying the magnetic structures of Cu(NiFe), CuCo and FeSiBNbCu metal alloys. The experiments were conducted at room temperature and up to 1 T (10 kOe) of external magnetic field. At zero fields, isotropic scattering identified as nuclear scattering is dominant. When a magnetic field is applied in a horizontal direction perpendicular to the neutron beam, the response of the magnetic scattering permits extraction of the field-induced re-arrangement of the magnetic moment. With increasing field the distortion is more pronounced and the magnetic scattering dominates the intensity and affects the peak position. Radial and angular averaging from experimental data are given to show the details of magnetic structures.
Volume 71 Issue 5 November 2008 pp 1021-1025 Small Angle Neutron Scattering
Small angle neutron scattering studies on protein denaturation induced by different methods
S Chodankar V K Aswal J Kohlbrecher R Vavrin A G Wagh
Small angle neutron scattering (SANS) has been used to study conformational changes in protein bovine serum albumin (BSA) as induced by varying temperature and in the presence of protein denaturating agents urea and surfactant. BSA has pro-late ellipsoidal shape and is found to be stable up to 60°C above which it denaturates and subsequently leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C, with fractal dimension increasing with temperature. BSA protein is found to unfold in the presence of urea at concentrations greater than 4 M and acquires a random coil Gaussian chain conformation. The conformation of the unfolded protein in the presence of surfactant has been determined directly using contrast variation SANS measurements by contrast matching surfactant molecules. The protein acquires a random coil Gaussian conformation on unfolding with its radius of gyration increasing with increase in surfactant concentration
Volume 71 Issue 5 November 2008 pp 1051-1055 Small Angle Neutron Scattering
Pressure-induced structural transition of nonionic micelles
V K Aswal R Vavrin J Kohlbrecher A G Wagh
We report dynamic light scattering and small angle neutron scattering studies of the pressure-induced structural transition of nonionic micelles of surfactant polyoxyethylene 10 lauryl ether (C12E10) in the pressure range 0 to 2000 bar. Measurements have been performed on 1 wt% C12E10 in aqueous solution with and without the addition of KF. Micelles undergo sphere to lamellar structural transitions as the pressure is increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.