Articles written in Pramana – Journal of Physics

    • Enhancement in heat and mass transfer over a permeable sheet with Newtonian heating effects on nanofluid: Multiple solutions using spectral method and stability analysis


      More Details Abstract Fulltext PDF

      This paper investigates the Newtonian heating effect on nanofluid flow over a nonlinear permeable stretching/shrinking sheet near the region of stagnation point. Only two important mechanisms on the transportation of nanoparticles in base fluid are discussed: the Brownian motion and thermophoresis. This physical problem is modelled using the Buongiorno (ASME J. Heat Transfer 128, 240 (2006) model in terms of nonlinear governing partial differential equations and transformed into dimensionless ordinary differential equations by using similarity transformation and the solution is calculated using the numerical scheme known as the Chebyshev spectral collocation method. The main interest of this study is the region of the boundary layer where viscous effects are dominant. Dual solutions are reported against the shrinking parameter in which the first solution is stable due to positive eigenvalues and the second is unstable due to negative eigenvalues and ranges of these solutions are effected by the suction parameter which is discussed using graphs and tables. The effects of dimensionless parameters, namely, velocity ratio, suction, Schmidt number, Prandtl number, thermophoresis and Brownian motion on temperature and concentration profiles, skin friction coefficient and Nusselt number are also shown using graphs. For the validity of the applied scheme, a comparison is established with published studies in the limiting case. Through the results, it is concluded that temperature and concentration increase by increasing the values of the thermophoresis parameter and the opposite behaviour is observed in the case of Brownian motion and Schmidt number. Skin friction coefficient, Nusselt and Sherwood numbers increase on increasing the suction parameter. Also, an enhancement in temperature and concentration profiles is observed in the presence of Newtonian heating parameter.

    • Heat transfer enhancement in a power-law nanofluid flow between two rotating stretchable disks


      More Details Abstract Fulltext PDF

      The advanced thermal characteristics of nanomaterials allow better heat transfer efficiency in engineering, industrial and technological processes. In this report, the outcome of a comparative analysis between the dynamics of blood carrying Cu nanoparticles and blood carrying single-walled carbon nanotubes (SWCNTs) due to the stretching and rotation of two disks at various levels of rotation, stretching, power-law index and heat source/sink is presented. By using appropriate similarity variables, the leading partial differential equations (PDEs)are altered into one-dimensional equations (ODEs). The resulting ODEs are handled using the shooting method. The impact of governing parameters on the boundary layer profiles is analysed graphically. Fluid velocity gets enhanced in three dimensions during the rotation of the disk, but they predict different behaviours for the stretching parameters of the upper and lower disks. The temperature decays for power-law index, rotation and stretching parameters. Also,the rates of heat transfer are more extensive for shear-thinning. Finally, the effects of the Cu–blood(blood) nanofluid are dominant over the base fluid (blood) and SWCNTs–blood nanofluid.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.