• Govind

      Articles written in Pramana – Journal of Physics

    • Bilayer exchange coupling and neel temperature of YBa2Cu3O6.2

      Govind A Pratap Ajay R S Tripathi

      More Details Abstract Fulltext PDF

      The present paper attempts to study the Neel temperature of bilayer antiferromagnetic cuprate YBa2Cu3O6.2 within anisotropic Heisenberg model. The double time Green’s function formalism within random phase approximation (RPA) has been used to obtain various correlation functions. The magnetization and the Neel temperature (TN) are evaluated. It is observed that the ratio of intrabilayer to inplane exchange coupling (r=J⊥/J‖) plays an important role in the magnetic dynamics of bilayer systems. The recent experimental data of bilayer system YBa2Cu3O6.2 have been used to estimate the ratio r from the expression for Neel temperature. The estimated values of spin gap and the ratio of hopping matrix elements t⊥/t‖ are found to be in fairly good agreement with the existing experimental results.

    • Spectral properties of doped bilayer cuprates at finite temperatures

      Amit Pratap Ratan Lal Govind S K Joshi

      More Details Abstract Fulltext PDF

      Recently, angle-resolved photoemission spectroscopy measurements on Bi2Sr2CaCu2O8+δ, which possesses two CuO2 layers in the same unit cell, have yielded very interesting results. For the overdoped samples, these results show a splitting of electronic states near k=(π, 0) point of Brillioun zone. On the other hand, no splitting is observed in the underdoped samples. In view of this, the detailed studies including the doping and temperature dependence of the spectral properties become desirable. In this paper, we consider cuprates possessing two CuO2 layers per unit cell. Each layer in the system is described by the t-t1-J model and the two layers are coupled via an intrabilayer hopping term (t) and an intrabilayer exchange coupling (J). A self-consistent perturbation approach is used to calculate the electronic spectral function for different values of hole density, hole momentum and temperature. We find that the imaginary part of the self energy is strongly momentum dependent which contradicts the suggestion that the Fermi surface of cuprates may be described by marginal Fermi liquid theory. We have calculated the spectral function for various values of intrabilayer parameters t and J. For larger values of intrabilayer interactions we observe the splitting in the quasi-particle peak at k=(π, 0) which is in agreement with the recent observations. The splitting is also found to be sensitive to the hole concentration as well as the temperature of the system. We have also discussed the reasons why the splitting is absent in underdoped bilayer cuprates at low temperature.

    • Condensation energy of the superconducting bilayer cuprates

      Govind Ajay S K Joshi

      More Details Abstract Fulltext PDF

      In the present work, we report the interplay of single particle and Cooper pair tunnelings on the superconducting state of layered high-Tc cuprate superconductors. For this we have considered a model Hamiltonian incorporating the intra-planar interactions and the contributions arising due to the coupling between the planes. The interplanar interactions include the single particle tunneling as well as the Josephson tunneling of Cooper pairs between the two layers. The expression of the out-of-plane correlation parameter which describes the hopping of a particle from one layer to another layer in the superconducting state is obtained within a Bardeen-Cooper-Schriefer (BCS) formalism using the Green’s function technique. This correlation is found to be sensitive to the various parameter of the model Hamiltonian. We have calculated the out-of-plane contribution to the superconducting condensation energy. The calculated values of condensation energy are in agreement with those obtained from the specific heat and the c-axis penetration depth measurements on bilayer cuprates.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.