• G C Sett

      Articles written in Pramana – Journal of Physics

    • Equivalent potentials for a nonsymmetric non-local interaction

      G C Sett U Laha B Talukdar

      More Details Abstract Fulltext PDF

      Scattering formalisms which incorporate antisymmetrization of the projectile with respect to identical particles in the target result in a nonsymmetric non-local interaction. Such an interaction constraints the relative wavefunctions to be orthogonal to redundant states forbidden by the Pauli principle. Concentrating on the nonsymmetric non-local kernel of Saito we try to visualize the mechanisms by which a potential can ensure the required orthogonality. We achieve this by replacing the Saito kernel by an effective symmetric non-local potential. The constructed symmetric potential is found to be phase-equivalent only but not off-shell equivalent to the original kernel. This difference in the off-shell behaviour is attributed to the dynamical origin simulating the redundant states. In close analogy with one of our recent works we also derive an energy-momentum dependent equivalent to the local potential. Our solution of the pseudo inverse problem is exact and provides a basis for writing the phase—and quasiphase—equations. We present numerical results in support of this.

    • Phase-function method for velocity-dependent potentials

      G C Sett B Talukdar

      More Details Abstract Fulltext PDF

      We have adapted the phase-function method for studying on- and off-shell properties of velocity-dependent potentials. The main result presented in this paper is an ansatz for the interpolatingT-matrix function (on- or off- the energy-shell as the case may). Based on this ansatz we have presented an efficient method for computing the off-shell extension function which plays a role in the theories of three particle system. We have demonstrated this by means of a model calculation.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.