• GUANGYI WANG

      Articles written in Pramana – Journal of Physics

    • A third-order memristive Wien-bridge circuit and its integrable deformation

      BIRONG XU GUANGYI WANG XIAOYUAN WANG HERBERT HO-CHING IU

      More Details Abstract Fulltext PDF

      In this paper, a novel passive memristor model and its equivalent circuit model are designed, analysed and realised to investigate the memristor characteristics and their applications in nonlinear circuits. By employing this memristor model, a new third-order memristive Wien bridge is set up. Dynamical behaviours of the system are studied in detail, and multiscroll attractors, coexisting bifurcation modes, coexisting attractors, antimonotonicity and transient chaotic bursting are observed in this system by using theoretical analysis, simulation analysis and circuit experiment. Integrable deformation of the memristive Wien-bridge system is analysed. The circuit experiment is performed by replacing the memristor with its equivalent circuit model in the proposed memristor-based Wien-bridge circuit.

    • A novel meminductor-based chaotic oscillating circuit and its DSP realisation for generating PN sequences

      CHUNYAN HAN YIRAN SHEN ZEYAN WU GUANGYI WANG

      More Details Abstract Fulltext PDF

      Meminductor is a novel nonlinear inductor with memory. A meminductor-based chaotic oscillating circuit that has only two linear resistors, two linear capacitors and a meminductor, is designed based on a mathematical model of the flux-controlled meminductor to study its characteristics in nonlinear circuit. Through the analysis of bifurcations, dynamic map and Lyapunov exponents, it is found that the system can exhibit some complex characteristics, such as an infinite number of equilibrium points and burst chaos. Especially, bifurcation without parameters and coexisting attractors appear under a fixed set of parameter values but different initial conditions. Moreover, random characteristics of the PN sequences generated from the chaotic circuit are tested via the test suit of National Institute of Standards and Technology (NIST), and the tested randomness definitely reaches the standards of NIST. Finally, a scheme for digitally realising this oscillating circuit is provided using the digital signal processor (DSP).

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.