• F Attallah

      Articles written in Pramana – Journal of Physics

    • Mass measurements of relativistic projectile fragments in the storage ring ESR

      T Radon H Geissel F Attallah K Beckert F Bosch A Dolinskiy H Eickhoff M Falch B Franczak B Franzke Y Fujita M Hausmann M Hellström F Herfurth Th Kerscher O Klepper H-J Kluge C Kozhuharov Yu Litvinov KEG Löbner G Münzenberg F Nolden Yu Novikov Z Patyk W Quint H Reich C Scheidenberger B Schlitt J Stadlmann M Steck K Sümmerer L Vermeeren M Winkler Th Winkler H Wollnik

      More Details Abstract Fulltext PDF

      Two experimental methods of measuring masses of exotic nuclei in the storage ring ESR are presented. Bismuth and nickel fragments were produced via projectile fragmentation, separated and investigated with the combination of the fragment separator FRS and the ESR: (i) Direct mass measurements of relativistic projectile fragments were performed using Schottky mass spectrometry (SMS), i.e., exotic nuclei were stored and cooled in the ESR. Applying electron cooling, the relative velocity spread of circulating low intensity beams can be reduced below 10−6. Under this condition a mass resolving power of up to m/Δm=6.5·105 (FWHM) was achieved in a recent measurement. Previously unknown masses of more than 100 neutron-deficient isotopes have been measured in the range of 60≤Z≤84. Using known Qα values the area of known masses could be extended to more exotic nuclei and to higher proton numbers. The results are compared with mass models and extrapolations of experimental values. In a second experiment with 209Bi projectiles the area of the measured masses was extended to lower proton numbers. Due to various improvements at the ESR the precision of the measurements could be raised. (ii) Exotic nuclei with half-lives shorter than the time needed for SMS (present limit: T1/2 ≈ 5 sec) can be investigated by time-of-flight measurements whereby the ESR is operated in the isochronous mode. This novel experimental technique has been successfully applied in first measurements with nickel and neon fragments where a mass resolving power of m/Δm=1.5·105 (FWHM) was achieved.

    • A rare nuclear decay process: The internal conversion between bound atomic states

      J F Chemin T Carreyre M Aiche F Attallah G Bogaert J P Grandin M Harston W E Meyerhof J N Scheurer

      More Details Abstract Fulltext PDF

      We shall report on the recently observed dependence of the lifetime of the first excited state in 125Te on the ionic charge state. Then we shall give an interpretation of the dependence of the half-life in terms of a new type of nuclear internal conversion without emission of the electron into the continuum of electron energies. We have named this process internal conversion between bound atomic states or BIC. The resonant character of the BIC will be established and the main parameters governing the decay process will be discussed [1–3].

      Finally the results of a recent experiment performed at the GANIL accelerator attempting to measure directly the value of the internal conversion coefficient associated with BIC in 125Te ions with charge states ranging between 44+ and 48+ will be given.

      In conclusion we shall discuss the relation between the BIC and nuclear excitation by electron transition, NEET, in the excitation of some nuclear isomeric states.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.