FAKIR CHAND
Articles written in Pramana – Journal of Physics
Volume 66 Issue 3 March 2006 pp 601-607 Brief Reports
Construction of exact dynamical invariants of two-dimensional classical system
A general method is used for the construction of second constant of motion of fourth order in momenta using the complex coordinates (
Volume 67 Issue 6 December 2006 pp 999-1009 Research Articles
Construction of exact complex dynamical invariant of a two-dimensional classical system
We present the construction of exact complex dynamical invariant of a two-dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.
Volume 68 Issue 6 June 2007 pp 891-900 Research Articles
Exact solutions to three-dimensional time-dependent Schrödinger equation
With a view to obtain exact analytic solutions to the time-dependent Schrödinger equation for a few potentials of physical interest in three dimensions, transformation-group method is used. Interestingly, the integrals of motion in the new coordinates turn out to be the desired invariants of the systems.
Volume 72 Issue 4 April 2009 pp 647-654 Research Articles
Ram Mehar Singh Fakir Chand S C Mishra
We deal with the difficulties claimed by the author of [
Volume 73 Issue 2 August 2009 pp 349-361
Fakir Chand S C Mishra Ram Mehar Singh
We investigate the quasi-exact solutions of an analogous Schrödinger wave equation for two-dimensional non-Hermitian complex Hamiltonian systems within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}$, $y = x_{2} + ip_{4}$, $p_{x} = p_{1} + ix_{3}$, $p_{y} = p_{2} + ix_{4}$. Explicit expressions for the energy eigenvalues and eigenfunctions for ground and first excited states of a two-dimensional $\mathcal{PT}$-symmetric sextic potential and some of its variants are obtained. The eigenvalue spectra are found to be real within some parametric domains.
Volume 75 Issue 4 October 2010 pp 599-605 Research Articles
Eigenvalue spectra of a $\mathcal{PT}$ -symmetric coupled quartic potential in two dimensions
The Schrödinger equation was solved for a generalized $\mathcal{PT}$-symmetric quartic potential in two dimensions. It was found that, under a suitable ansatz for the wave function, the system possessed real and discrete energy eigenvalues. Analytic expressions for the energy eigenvalues and the eigenfunctions for the first four states were obtained. Some constraining relations among the wave function parameters rendered the problem quasi-solvable.
Volume 78 Issue 4 April 2012 pp 513-529 Research Articles
Exact solutions of some physical models using the ($G'/G$)-expansion method
Anand Malik Fakir Chand Hitender Kumar S C Mishra
The ($G'/G$)-expansion method and its simpliﬁed version are used to obtain generalized travelling wave solutions of ﬁve nonlinear evolution equations (NLEEs) of physical importance, viz. the ($2+1$)-dimensional Maccari system, the Pochhammer–Chree equation, the Newell–Whitehead equation, the Fitzhugh–Nagumo equation and the Burger–Fisher equation. A variety of special solutions like periodic, kink–antikink solitons, bell-type solitons etc. can easily be derived from the general results. Three-dimensional proﬁle plots of some of the solutions are also drawn.
Volume 80 Issue 2 February 2013 pp 361-367 Brief Reports
Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
Hitender Kumar Anand Malik Fakir Chand
In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and $G(m, n)$ equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.
Volume 83 Issue 1 July 2014 pp 39-48
Solutions to the 𝑁-dimensional radial Schrödinger equation for the potential $ar^2 + br − c/r$
Approximate solutions to the 𝑁-dimensional radial Schrödinger equation for the potential $ar^2 + br − c/r$ are obtained by employing the formulation described in Ciftci
Volume 91 Issue 4 October 2018 Article ID 0046 Research Article
Bound state solutions to the Schrödinger equation for some diatomic molecules
RICHA RANI S B BHARDWAJ FAKIR CHAND
The bound state solutions to the radial Schrödinger equation are obtained in three-dimensional space using the series expansion method within the framework of a general interaction potential. The energy eigenvaluesof the pseudoharmonic and Kratzer potentials are given as special cases. The obtained analytical results are applied to several diatomic molecules, i.e. $\rm{N}_{2}$,CO,NO and CH. In order to check the accuracy of the present method, a comparison is made with similar results obtained in the literature by using other techniques.
Volume 92 Issue 1 January 2019 Article ID 0008 Research Article
ANAND MALIK HITENDER KUMAR RISHI PAL CHAHAL FAKIR CHAND
We explore the dynamics of quadratic and quartic nonlinear diffusion–reaction equations with nonlinear convective flux term, which arise in well-known physical and biological problems such as population dynamicsof the species. Three integration techniques, namely the $(G'/G)$-expansion method, its generalised version and Kudryashov method, are adopted to solve these equations. We attain new travelling and solitary wave solutions inthe form of Jacobi elliptic functions, hyperbolic functions, trigonometric functions and rational solutions with some constraint relations that naturally appear from the structure of these solutions. The travelling population fronts,which are the general solutions of nonlinear diffusion–reaction equations, describe the species invasion if higher population density corresponds to the species invasion. This effort highlights the significant features of the employed algebraic approaches and shows the diversity in the constructed solutions.
Current Issue
Volume 93 | Issue 5
November 2019
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.