• Dipankar Home

      Articles written in Pramana – Journal of Physics

    • Facets of tripartite entanglement

      Dipankar Home

      More Details Abstract Fulltext PDF

      Tripartite entangled states of systems 1, 2 and 3 involving nonorthogonal states are used to reveal two hitherto unexplored quantum effects. The first shows that kinematic entanglement between the states of 1 and 2 can affect the result of dynamical interaction between 2 and 3, though 1 and 2 may be spatially separated so that they no longer interact. The second shows that if a residual interaction persists between 1 and 2 while 2 interacts with 3 to form an entangled state, the measurement of observables of 1 can be used to determine whether 2 has interacted with 3. This effect occurs even when the measurement on 1 is made long after the residual interaction between 1 and 2 has ceased to act. Such effects resulting from interplay between unitary dynamics and kinematic entanglement have interesting implications. In particular, we discuss the significance as regards what we call the dynamic version of Einstem locality.

    • Generic entangling through quantum indistinguishability

      Sougato Bose Dipankar Home

      More Details Abstract Fulltext PDF

      We present a general scheme for entangling any degree of freedom of two uncorrelated identical particles from independent sources by a combination of two-particle interferometry and which-way detection. We show that this entanglement generation procedure works for completely random initial states of the variable to be entangled. We also demonstrate a curious complementarity exhibited by our scheme and its applications in estimating the generated entanglement as a function of wave packet overlap at the beamsplitter.

    • Violation of Bell’s inequality in neutral kaons system

      Manoj K Samal Dipankar Home

      More Details Abstract Fulltext PDF

      We show by general considerations that it is not possible to test violation of the existing versions of Bell’s inequality in entangled neutral kaons system using experimentally accessible thin regenerators. We point out the loophole in the recent argument (A Bramon and M Nowakowski, Phys. Rev. Lett.83, 1 (1999)) that claimed such a test to be possible.

    • Quantum superarrivals and information transfer through a time-varying boundary

      AS Majumdar Dipankar Home

      More Details Abstract Fulltext PDF

      The time-dependent Schrödinger equation is solved numerically for the case of a Gaussian wave packet incident on a time-varying potential barrier. The time evolving reflection and transmission probabilities of the wave packet are computed for several different time-dependent boundary conditions obtained by reducing or increasing the height of the potential barrier. We show that in the case when the barrier height is reduced to zero, a time interval is found during which the reflection probability is larger (superarrivals) compared to the unperturbed case. We further show that the transmission probability exhibits superarrivals when the barrier is raised from zero to a finite value of its height. Superarrivals could be understood by ascribing the features of a real physical field to the Schrödinger wave function which acts as a carrier through which a disturbance, resulting from the boundary condition being perturbed, prpagates from the barrier to the detectors measuring reflected and transmitted probabilities. The speed of propagation of this effect depends upon the rate of reducing or raising the barrier height, thus suggesting an application for secure information transfer using superarrivals.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.