• D Kanjilal

      Articles written in Pramana – Journal of Physics

    • Peak effect at microwave frequencies in swift heavy ion irradiated YBa2Cu3O7-δ thin films

      Tamalika Banerjee Avinash Bhangale D Kanjilal S P Pai R Pinto

      More Details Abstract Fulltext PDF

      The vortex dynamics at microwave frequencies in YBa2Cu3O7-δ (YBCO) films have been studied. We observe a peak in the microwave (4.88 and 9.55 GHz) surface resistance in some films in magnetic fields up to 0.8 T. This is associated with the ‘peak-effect’ phenomenon and reflects the order-disorder transformation of the flux line lattice near the transition temperature. Introduction of artificial pinning centers like columnar defects created as a result of irradiation with 200 MeV Ag ion (at a fluence of 4×1010 ions/cm2) leads to the suppression of the peak in films previously exhibiting ‘peak effect’.

    • Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7-δ thin films at microwave frequencies

      Ujwala Ail Tamalika Banerjee A R Bhangale D Kanjilal R Pinto

      More Details Abstract Fulltext PDF

      We report the observation of a propounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7-δ (DBCO) thin films. The measurements were carried out in zero field as well as in the presence of magnetic fields (up to 0.8 T). The films were irradiated using 90 MeV oxygen ions at Nuclear Science Centre, New Delhi at a fluence of 3×1013 ions/cm2. Introduction of point defects and extended defects after irradiation suppresses the peak at 9.55 GHz whereas no suppression is observed at 4.88 GHz. These results and the vortex dynamics in the films at microwave frequencies before and after irradiation are discussed.

    • The non-linear dynamics of vortices subjected to correlated and random pinning disorders in a quasi-2D superconductor

      Leena K Sahoo R C Budhani D Kanjilal G K Mehta

      More Details Abstract Fulltext PDF

      Understanding the dynamics of vortex matter subjected to random and correlated pinning disorders in layered superconductors remains a topic of considerable interest. The dynamical behavior of vortices in these systems shows a rich variety of effects due to many competing interactions. Here, we study the ac response of as-grown as well as heavy-ion-irradiated Tl2Ba2CaCu2O8 (Tl-2212) thin films by using a micro Hall-probe susceptometer. We find that the dynamics of vortices in the high-temperature, low-field regime of the H-T phase diagram investigated here depends on the nature of pinning defects. While the decay of screening currents J(t) indicates a glassy behavior in both types of samples, the nature of the glassy phase is different in the two cases. Samples with columnar defects show distinct signature of a Bose glass in the measurement of J(t) and the angular dependence of the irreversibility field (B irr).

    • Modification of magnetic anisotropy in metallic glasses using high-energy ion beam irradiation

      KV Amrute UR Mhatre SK Sinha DC Kothari R Nagarajan D Kanjilal

      More Details Abstract Fulltext PDF

      Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.

    • New modifications in 15 UD pelletron at nuclear science centre

      S Chopra N S Pawar M P Singh Rakesh Kumar J Prasad V P Patel Raj Pal B Kumar S Ojha K Devarani T Nandi M Sota P Barua S Gargari R Joshi D Kanjilal SK Datta

      More Details Abstract Fulltext PDF

      The 15 UD pelletron at NSC has been operational and performed well during the last 11 years. There have been major modifications performed for upgradation of pelletron system over this period. Major upgradations which have been implemented are new resistor network system for voltage gradient, doublet to singlet unit conversion for accelerator units, turbopump based gas stripper system etc. In addition accelerator mass spectroscopy program has also been started. A new multi-cathode source, Wien filter etc. have been procured and will be added soon in the system. An overview of the most significant upgradations undertaken and other activities for the system are being reported in the present paper.

    • ECR ion source based low energy ion beam facility

      P Kumar G Rodrigues U K Rao C P Safvan D Kanjilal A Roy

      More Details Abstract Fulltext PDF

      Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.