• D C Biswas

      Articles written in Pramana – Journal of Physics

    • Foreword

      D C Biswas K Mahata V M Datar

      More Details Abstract Fulltext PDF
    • Fission fragment mass distributions via prompt 𝛾-ray spectroscopy

      L S Danu D C Biswas B K Nayak R K Choudhury

      More Details Abstract Fulltext PDF

      The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the 𝛾-ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt 𝛾-ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.

    • Measurement of multinucleon transfer cross-sections in 58Ni,56Fe(12C, 𝑥); 𝑥: 13,11C, 11,10B, 10,9,7Be, 8Be𝑔.s. and 7,6Li at 𝐸(12C) = 60 MeV

      B J Roy A Parmar T Nandi Biraja Mohanty M Oswal Sunil Kumar A Jhingan V Jha D C Biswas

      More Details Abstract Fulltext PDF

      Cross-sections for one- and multinucleon transfer reactions, namely, 58Ni(12C, 13C), 58Ni(12C, 11C), 58Ni(12C, 11B), 58Ni(12C, 10B), 58Ni(12C, 10Be), 58Ni(12C, 9Be), 58Ni(12C, 8Be𝑔.s.), 58Ni(12C, 7Be), 58Ni(12C, 7Li) and 58Ni(12C, 6Li) have been measured at an incident energy of 60 MeV. The reaction cross-section for the corresponding transfer channels in the system 12C+56Fe have also been measured under the same kinematical conditions. Angular distribution of the elastic scattering cross-section is measured at 60 MeV. The measured elastic scattering angular distributions for these two systems have been analysed using the optical model search code SFRESCO and the potential parameters are extracted. The multinucleon transfer data are analysed to obtain cross-section dependence on the number of nucleons transferred and on the ground state 𝑄-values. The transfer probabilities for multinucleon stripping are extracted. A detailed comparison in the multiparticle stripping and elastic scattering cross-sections between these two systems are made to understand the mechanism of multinucleon transfer and possible role of two extra protons in 58Ni target nucleus as compared to the 56Fe core.

  • Pramana – Journal of Physics | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.