• C Suguna

      Articles written in Pramana – Journal of Physics

    • Synchronization in multicell systems exhibiting dynamic plasticity

      C Suguna Somdatta Sinha

      More Details Abstract Fulltext PDF

      Collective behaviour in multicell systems arises from exchange of chemicals/signals between cells and may be different from their intrinsic behaviour. These chemicals are products of regulated networks of biochemical pathways that underlie cellular functions, and can exhibit a variety of dynamics arising from the non-linearity of the reaction processes. We have addressed the emergent synchronization properties of a ring of cells, diffusively coupled by the end product of an intracellular model biochemical pathway exhibiting non-robust birhythmic behaviour. The aim is to examine the role of intercellular interaction in stabilizing the non-robust dynamics in the emergent collective behaviour in the ring of cells. We show that, irrespective of the inherent frequencies of individual cells, depending on the coupling strength, the collective behaviour does synchronize to only one type of oscillations above a threshold number of cells. Using two perturbation analyses, we also show that this emergent synchronized dynamical state is fairly robust under external perturbations. Thus, the inherent plasticity in the oscillatory phenotypes in these model cells may get suppressed to exhibit collective dynamics of a single type in a multicell system, but environmental influences can sometimes expose this underlying plasticity in its collective dynamics.

    • Collective dynamics of multicellular systems

      R Maithreye C Suguna Somdatta Sinha

      More Details Abstract Fulltext PDF

      We have studied the collective behaviour of a one-dimensional ring of cells for conditions when the individual uncoupled cells show stable, bistable and oscillatory dynamics. We show that the global dynamics of this model multicellular system depends on the system size, coupling strength and the intrinsic dynamics of the cells. The intrinsic variability in dynamics of the constituent cells are suppressed to stable dynamics, or modified to intermittency under different conditions. This simple model study reveals that cell–cell communication, system size and intrinsic cellular dynamics can lead to evolution of collective dynamics in structured multicellular biological systems that is significantly different from its constituent single-cell behaviour.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.