• Bipin K Srivastava

      Articles written in Pramana – Journal of Physics

    • Magnetic structure of (Fe0.97Cr0.03)2P

      Sudhish Kumar S K Paranjpe Bipin K Srivastava Anjali Krishnamurthy V C Sahni

      More Details Abstract Fulltext PDF

      Magnetic behaviour of di-metal iron phosphide with a small substitution of iron by chromium, (Fe0.97Cr0.03)2P, has been studied using SQUID magnetometry and powder neutron diffraction. It is paramagnetic at temperatures above ∼180 K with persisting short range ferromagnetic (FM) order. At lower temperatures three different regions of magnetic behaviour are identified. FM order evolves in the region 180 K-120 K but much more slowly and with much less magnetic moments than in Fe2P. In the region 120 K-50 K negative exchange interactions gain some importance leading to a loss of FM order. Below 50 K FM interactions again dominate. Pinning centres influence the behaviour at low temperature up to ∼100 K.

    • Magnetic behaviour of nano-particles of Fe2.9Zn0.1O4

      Subhash Chander Sudhish Kumar Anjali Krishnamurthy Bipin K Srivastava V K Aswal

      More Details Abstract Fulltext PDF

      DC magnetization measurements are reported in the temperature range 20–100 K on a poly-disperse nano-particle sample of the spinel ferrite Fe2.9Zn0.1O4 with a log-normal size distribution of median diameter 43.6 Å and standard deviation 0.58. Outside a core of ordered spins, moments in surface layer are disordered. Results also show some similarities with conventional spin glasses. Blocking temperature exhibits a near linear variation with two-third power of the applied magnetic field and magnetizationM evolves nearly linearly with logarithm of timet. Magnetic anisotropy has been estimated by analysing theM-logt curve. Anisotropy values show a large increase over that of bulk particle samples. Major contribution to this enhancement comes from the disordered surface spins.

    • Magnetization and neutron diffraction studies on FeCrP

      Sudhish Kumar Anjali Krishnamurthy Bipin K Srivastava A Das S K Paranjpe

      More Details Abstract Fulltext PDF

      Crystal structure and magnetic behaviour of FeCrP have been investigated using magnetization and neutron diffraction measurements. FeCrP crystallizes in orthorhombic FeZrP type structure (Pnma space group,Z = 4) in which Cr atoms occupy the pyramidal site and Fe atoms occupy the tetrahedral site with total preference. Structural parameters including positional parameters have been refined. The refined values of positional parameters for Fe and Cr are quite different from those in FeZrP. The nature of magnetization-temperature curve is suggestive of antiferromagnetic nature withTN = 280 (±10) K. Preliminary analysis of neutron diffraction pattern at 13 K is indicative of a rather complicated magnetic structure.

    • Magnetic behaviour of (Fe0.85Cr0.15)2As

      S K Jain A Das Bipin K Srivastava Anjali Krishnamurthy S K Paranjpe

      More Details Abstract Fulltext PDF

      Magnetization and neutron diffraction measurements have been made on the title pseudo-binary of tetragonal anti-ferromagnets Fe2 As and Cr2 As. In this system antiferromagnetic (AFM) ordering appears below 310 K. The moments are confined in theab plane but unlike in the end members they are tilted off thea-axis. In addition to the AFM structure a weak ferromagnetic behaviour shows up below∼80 K with a rather low moment of ∼0.07 μB per formula unit at 5 K and under a field of 3 T.

    • Magnetic behaviour of nano-particles of Fe2.8Zn0.2O4

      Subhash Chander Seema Lakhanpal Anjali Krishnamurthy Bipin K Srivastava V K Aswal

      More Details Abstract Fulltext PDF

      Magnetization measurements are reported on a nano-particle sample of Znsubstituted spinel ferrite Fe2.8Zn0.2O4 in the temperature range 20–300 K. Analysis of small-angle neutron scattering data shows the sample to have a log-normal particle size distribution of median diameter 64.4 Å and standard deviation 0.38. Magnetization evolves over a long period of timet going nearly linearly with logt. Magnetic anisotropy, estimated by fitting M-logt curve, shows many fold increase over that of bulk particle sample. Major enhancement owes to disordered moments in surface layer. In the nano-particle state as well increasing amount of Zn causes anisotropy to decrease.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.