B S Tomar
Articles written in Pramana – Journal of Physics
Volume 64 Issue 2 February 2005 pp 221-227 Research Articles
Angular momentum transfer in incomplete fusion
B S Tomar K Surendra Babu K Sudarshan R Tripathi A Goswami
Isomeric cross-section ratios of evaporation residues formed in
Volume 66 Issue 6 June 2006 pp 985-997
Suparna Sodaye B S Tomar A Goswami
Excitation functions of reaction products formed in16O +66Zn and37Cl +45Sc systems, leading to the same compound nucleus,82Sr, were measured using recoil-catcher technique and off-line γ-ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in16O +66 systems in the beam energy range studied, while37Cl +45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model
Volume 68 Issue 1 January 2007 pp 111-116 Brief Reports
Odd–even effect in fragment angular momentum in low-energy fission of actinides
B S Tomar R Tripathi A Goswami
Quantitative explanation for the odd–even effect on fragment angular momenta in the low-energy fission of actinides have been provided by taking into account the single particle spin of the odd proton at the fragment's scission point deformation in the case of odd-𝑍 fragments along with the contribution from the population of angular momentum bearing collective vibrations of the fissioning nucleus at scission point. The calculated fragment angular momenta have been found to be in very good agreement with the experimental data for fragments in the mass number region of 130–140. The odd–even effect observed in the fragment angular momenta in the low-energy fission of actinides has been explained quantitatively for the first time.
Volume 82 Issue 4 April 2014 pp 683-696
Probing of complete and incomplete fusion dynamics in heavy-ion collision
D Singh Rahbar Ali M Afzal Ansari B S Tomar M H Rashid R Guin S K Das R Kumar R P Singh S Muralithar R K Bhowmik
Three different types of experiments have been performed to explore the complete and incomplete fusion dynamics in heavy-ion collisions. In this respect, first experiment for the measurement of excitation functions of the evaporation residues produced in the 20Ne+165Ho system at projectile energy ranges ≈2–8 MeV/nucleon has been done. Measured cumulative and direct crosssections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. It has been observed that, incomplete fusion fraction is sensitively dependent on projectile energy and mass asymmetry between the projectile and the target systems. Second experiment for measuring the forward recoil range distributions of the evaporation residues produced in the 20Ne+165Ho system at projectile energy ≈8MeV/nucleon has been done. It has been observed that, some evaporation residues have shown additional peaks in the measured forward recoil range distributions at cumulative thicknesses relatively smaller than the expected range of the residues produced via complete fusion. The results indicate the occurrence of incomplete fusion involving the breakup of 20Ne into 4He+16O and/or 8Be+12C followed by one of the fragments with target nucleus 165Ho. Third experiment for the measurement of spin distribution of the evaporation residues produced in the 16O+124Sn system at projectile energy ≈6 MeV/nucleon, showed that the residues produced as incomplete fusion products associated with fast 𝛼 and 2𝛼-emission channels observed in the forward cone, are found to be distinctly different from those of the residues produced as complete fusion products. The spin distribution of the evaporation residues also inferred that in incomplete fusion reaction channels input angular momentum ($J_0$) increases with fusion incompleteness when compared to complete fusion reaction channels. Present observation clearly shows that the production of fast forward 𝛼-particles arises from relatively larger angular momentum in the entrance channel leading to peripheral collision.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.