Amol Dighe
Articles written in Pramana – Journal of Physics
Volume 55 Issue 1-2 July 2000 pp 335-345
Debajyoti Choudhury Rahul Sinha S Arunagiri Gautam Bhattacharyya Debrupa Chakraverty Debajyoti Choudhury Amitava Datta Anindya Datta Aseskrishna Datta Amol Dighe Dilip Kumar Ghosh Anjan Giri Stephen King Anirban Kundu Rukmani Mohanta Biswarup Mukhopadhyaya Sreerup Raychaudhuri Saurabh Rindani Probir Roy DP Roy Sourov Roy AI Sanda Nita Sinha Rahul Sinha K Sridhar H Yamamoto
This report summarises the work done during WHEPP-6 (Institute of Mathematical Sciences, Chennai, India, Jan 3–15, 2000) in Working group on ‘
Volume 55 Issue 1-2 July 2000 pp 347-355
Discussion on a possible neutrino detector located in India
MVN Murthy Urjit A Yajnik KRS Balaji G Bhattacharyya Amol Dighe Shashikant Dugad ND Hari Dass PK Kabir Kamales Kar D Indumathi John G Learned Debasish Majumdar NK Mondal MVN Murthy SN Nayak Sandip Pakvasa Amitava Raychaudhuri RS Raghavan G Rajasekaran R Ramachandran Alak K Ray Asim K Ray Saurabh Rindani HS Sharatchandra Rahul Sinha Nita Sinha S Umasankar Urjit A Yajnik
We have identified some important and worthwhile physics opportunities with a possible neutrino detector located in India. Particular emphasis is placed on the geographical advantage with a stress on the complimentary aspects with respect to other neutrino detectors already in operation.
Volume 63 Issue 6 December 2004 pp 1359-1365
Working group report: Low energy and flavour physics
Amol Dighe Anirban Kundu K Agashe B Anantanarayan A Chandra A Datta P K Das S P Das A Dighe R Forty D K Ghosh Y -Y Keum A Kundu N Mahajan S Majhi G Mazumdar K Mazumdar P Mehta Y Nir J P Saha R Singh N Sinha R Sinha A Soni S Uma Sankar R Vaidya
This is a report of the low energy and flavour physics working group at WHEPP-8, held at the Indian Institute of Technology, Mumbai, India, during 5–16 January 2004.
Volume 76 Issue 5 May 2011 pp 729-739
𝐵 Physics: WHEPP-XI working group report
Amol Dighe Anjan Giri Rupak Dutta Naveen Gaur Tim Gershon Diptimoy Ghosh Xiao-Gang He George W-S Hou Yong-Yeon Keum Bhavik Kodrani Namit Mahajan Joaquim Matias Barilang Mawlong Basudha Misra Rukmani Mohanta Gagan Mohanty Sudhir Vempati
We present the report of the 𝐵 physics working group of the Workshop on High Energy Physics Phenomenology (WHEPP-XI), held at the Physical Research Laboratory, Ahmedabad, in January 2010.
Volume 79 Issue 5 November 2012 pp 1125-1139 Flavour Physics II
Some theoretical issues in heavy flavour physics
Some of the recent developments in heavy flavour physics will be reviewed. This will include an update on some of the Standard Model predictions, and a summary of recent measurements that may indicate the presence of new physics (NP). The focus will be on selected models of NP that are indicated by the anomalies in the current data. Observables that can potentially yield signatures of specific physics beyond the Standard Model will be pointed out.
Volume 79 Issue 5 November 2012 pp 1281-1284 Poster Presentations
$B_{s}$ data at Tevatron and possible new physics
Amol Dighe Diptimoy Ghosh Anirban Kundu Sunando Kumar Patra
The new physics (NP) is parametrized with four model-independent quantities: the magnitudes and phases of the dispersive part $M_{12}$ and the absorptive part $\Gamma_{12}$ of the NP contribution to the effective Hamiltonian. We constrain these parameters using the four observables $\Delta M_{\text{s}}$, $\Delta \Gamma_{\text{s}}$, the mixing phase $\beta_{\text{s}}^{J/\psi \phi}$ and $A_{\text{sl}}^{b}$. This formalism is extended to include charge-parity-time reversal (CPT) violation, and it is shown that CPT violation by itself, or even in the presence of CPTconserving NP without an absorptive part, helps only marginally in the simultaneous resolution of these anomalies.
Volume 88 Issue 5 May 2017 Article ID 0079 Research Article
Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO)
A KUMAR A M VINOD KUMAR ABHIK JASH AJIT K MOHANTY ALEENA CHACKO ALI AJMI AMBAR GHOSAL AMINA KHATUN AMITAVA RAYCHAUDHURI AMOL DIGHE ANIMESH CHATTERJEE ANKIT GAUR ANUSHREE GHOSH ASHOK KUMAR ASMITA REDIJ B SATYANARAYANA B S ACHARYA BRAJESH C CHOUDHARY C RANGANATHAIAH C D RAVIKUMAR CHANDAN GUPTA D INDUMATHI DALJEET KAUR DEBASISH MAJUMDAR DEEPAK SAMUEL DEEPAK TIWARI G RAJASEKARAN GAUTAM GANGOPADHYAY GOBINDA MAJUMDER H B RAVIKUMAR J B SINGH J S SHAHI JAMES LIBBY JYOTSNA SINGH K RAVEENDRABABU K K MEGHNA K R REBIN KAMALESH KAR KOLAHAL BHATTACHARYA LALIT M PANT M SAJJAD ATHAR M V N MURTHY MANZOOR A MALIK MD NAIMUDDIN MOHAMMAD SALIM MONOJIT GHOSH MOON MOON DEVI NABA K MONDAL NAYANA MAJUMDAR NITA SINHA NITALI DASH POMITA GHOSHAL POONAM MEHTA PRAFULLA BEHERA R KANISHKA RAJ GANDHI RAJESH GANAI RASHID HASAN S KRISHNAVENI S M LAKSHMI S K SINGH S S R INBANATHAN S UMA SANKAR SADIQ JAFER SAIKAT BISWAS SANJEEV KUMAR SANJIB KUMAR AGARWALLA SANDHYA CHOUBEY SATYAJIT SAHA SHAKEEL AHMED SHIBA PRASAD BEHERA SRUBABATI GOSWAMI SUBHASIS CHATTOPADHYAY SUDEB BHATTACHARYA SUDESHNA BANERJEE SUDESHNA DASGUPTA SUMANTA PAL SUPRATIK MUKHOPADHYAY SUSHANT RAUT SUVENDU BOSE SWAPNA MAHAPATRA TAPASI GHOSH TARAK THAKORE V K S KASHYAP V S SUBRAHMANYAM VENKTESH SINGH VINAY B CHANDRATRE VIPIN BHATNAGAR VIVEK M DATAR WASEEM BARI Y P VIYOGI
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies andpath lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial toaddress some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations.We describe the simulation framework, the neutrino interactions in the detector, and the expected responseof the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Itscharge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.