Alemiye Mamo
Articles written in Pramana – Journal of Physics
Volume 68 Issue 6 June 2007 pp 943-958 Research Articles
Cluster model of s- and p-shell $\Lambda \Lambda$ hypernuclei
Mohammad Shoeb Alemiye Mamo Amanuel Fessahatsion
The $\Lambda \Lambda$ binding energy ($B_{\Lambda \Lambda}$) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological 𝛬-core potentials consistent with the 𝛬-core energies and a wide range of simulated s-state $\Lambda \Lambda$ potentials are taken as input. The $B_{\Lambda \Lambda}$ of $_{\Lambda \Lambda}^{6}$He is explained and $_{\Lambda \Lambda}^{5}$He and $_{\Lambda \Lambda}^{5}$H are predicted to be particle stable in the $\Lambda \Lambda$-core model. The results for s-shell hypernuclei are in excellent agreement with those of non-VMC calculations. The $_{\Lambda\Lambda}^{10}$Be in $\Lambda \Lambda \alpha \alpha$ model is overbound for combinations of $\Lambda \Lambda$ and $\Lambda \alpha$ potentials. A phenomenological dispersive three-body force, $V_{\Lambda \alpha \alpha}$, consistent with the $B_{\Lambda}$ of $_{\Lambda}^{9}$Be in the $\Lambda \alpha \alpha$ model underbinds $_{\Lambda \Lambda}^{10}$Be. The incremental $\Delta B_{\Lambda \Lambda}$ values for the s- and p-shell cannot be reconciled, consistent with the finding of earlier analyses.
Current Issue
Volume 93 | Issue 6
December 2019
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.