A K Mohanty
Articles written in Pramana – Journal of Physics
Volume 39 Issue 5 November 1992 pp 547-557 Research Articles
A new polarization potential for heavy ion fusion spin distribution
A K Mohanty S K Kataria S V S Sastry
The real part of the polarization potential which depends on both energy and angular momentum is calculated in a simple way using dispersion relation. A barrier penetration model (BPM) has been used to explain the fusion cross-section and compound nucleus spin distribution for32S+64Ni system in the energy range 50–75 MeV. It is also shown that the polarization potential which only depends on energy, is not adequate to give rise to correct spin distribution even after including any radial dependence. The proposed polarization potential with implicit
Volume 41 Issue 6 December 1993 pp 525-534
S V S Sastry A K Mohanty S K Kataria
The energy
Volume 43 Issue 4 October 1994 pp 319-337
Distribution of fusion barriers
Heavy ion fusion cross sections and compound nucleus average spin values obtained from distribution of fusion barriers are discussed. Various shapes of distribution functions are studied using a truncated Gaussian distribution function (TGD). It is shown that fusion cross section and average spin values are less sensitive to different parametrization of TGD function, whereas the second derivative of the product of energy and fusion cross sections (w.r.t. energy), obtained from the corresponding TGD functions are significantly different depending on the shape of the barrier distribution function. It is also shown by
Volume 44 Issue 2 February 1995 pp 153-166
A new approach for heavy ion fusion spin distribution
S V S Sastry A K Mohanty S K Kataria
The method of optical model analysis of generalized elastic scattering angular distributions (GESA) has been applied to heavy ion scattering to derive fusion spin distributions. This method is used to reproduce the coupled channel fusion spin distributions. When applied to experimental data, particularly to the fissile systems like16O +232Th, the method gives large mean square spin values in agreement with “anomalous” values derived from experimental fission fragment anisotropies.
Volume 57 Issue 2-3 August 2001 pp 355-369
First results from RHIC-PHENIX
Tarun Kanti Ghosh K Adcox S S Adler N Ajitanand Y Akiba J Alexander L Aphecetche Y Arai S H Aronson R Averbeck T C Awes K N Barish P D Barnes J Barrette B Bassalleck S Bathe V Baublis A Bazilevsky S Belikov F G Bellaiche S T Belyaev M J Bennett Y Berdnikov S Botelho M L Brooks D S Brown N Bruner D Bucher H Buesching V Bumazhnov G Bunce J Burward-Hoy S Butsyk T A Carey P Chand J Chang W C Chang L L Chavez S Chernichenko C Y Chi J Chiba M Chiu R K Choudhury T Christ T Chujo M S Chung P Chung V Cianciolo B A Cole D G D’Enterria G David H Delagrange A Denisov A Deshpande E J Desmond O Dietzsch B V Dinesh A Drees A Durum D Dutta K Ebisu Y V Efremenko K El Chenawi H En’yo S Esumi L Ewell T Ferdousi D E Fields S L Fokin Z Fraenkel A Franz A D Frawley S-Y Fung S Garpman T K Ghosh A Glenn A L Godoi Y Goto S V Greene M Grosse Perdekamp S K Gupta W Guryn H-Å Gustafsson J S Haggerty H Hamagaki A G Hansen H Hara E P Hartouni R Hayano N Hayashi X He T K Hemmick J Heuser J C Hill D S Ho K Homma B Hong A Hoover T Ichihara K Imai M S Ippolitov M Ishihara B V Jacak W Y Jang J Jia B M Johnson S C Johnson K S Joo S Kametani J H Kang M Kann S S Kapoor S Kelly B Khachaturov A Khanzadeev J Kikuchi D J Kim H J Kim S Y Kim Y G Kim W W Kinnison E Kistenev A Kiyomichi C Klein-Boesing S Klinksiek L Kochenda D Kochetkov V Kochetkov D Koehler T Kohama A Kozlov P J Kroon K Kurita M J Kweon Y Kwon G S Kyle R Lacey J G Lajoie J Lauret A Lebedev D M Lee M J Leitch X H Li Z Li D J Lim M X Liu X Liu Z Liu C F Maguire J Mahon Y I Makdisi V I Manko Y Mao S K Mark S Markacs G Martinez M D Marx A Masaike F Matathias T Matsumoto P L McGaughey E Melnikov M Merschmeier F Messer M Messer Y Miake T E Miller A Milov S Mioduszewski R E Mischke G C Mishra J T Mitchell A K Mohanty D P Morrison J M Moss F Mühlbacher M Muniruzzaman J Murata S Nagamiya Y Nagasaka J L Nagle Y Nakada B K Nandi J Newby L Nikkinen P Nilsson S Nishimura A S Nyanin J Nystrand E O’Brien C A Ogilvie H Ohnishi I D Ojha M Ono V Onuchin A Oskarsson L Österman I Otterlund K Oyama L Paffrath A P T Palounek V S Pantuev V Papavassiliou S F Pate T Peitzmann A N Petridis C Pinkenburg R P Pisani P Pitukhin F Plasil M Pollack K Pope M L Purschke I Ravinovich K F Read K Reygers V Riabov Y Riabov M Rosati A A Rose S S Ryu N Saito A Sakaguchi T Sakaguchi H Sako T Sakuma V Samsonov T C Sangster R Santo H D Sato S Sato S Sawada B R Schlei Y Schutz V Semenov R Seto T K Shea I Shein T-A Shibata K Shigaki T Shiina Y H Shin I G Sibiriak D Silvermyr K S Sim J Simon-Gillo C P Singh V Singh M Sivertz A Soldatov R A Soltz S Sorensen P W Stankus N Starinsky P Steinberg E Stenlund A Ster S P Stoll M Sugioka T Sugitate J P Sullivan Y Sumi Z Sun M Suzuki E M Takagui A Taketani M Tamai K H Tanaka Y Tanaka E Taniguchi M J Tannenbaum J Thomas J H Thomas T L Thomas W Tian J Tojo H Torii R S Towell I Tserruya H Tsuruoka A A Tsvetkov S K Tuli H Tydesjö N Tyurin T Ushiroda H W van Hecke C Velissaris J Velkovska M Velkovsky A A Vinogradov M A Volkov A Vorobyov E Vznuzdaev H Wang Y Watanabe S N White C Witzig F K Wohn C L Woody W Xie K Yagi S Yokkaichi G R Young I E Yushmanov W A Zajc Z Zhang S Zhou
The PHENIX experiment consists of a large detector system located at the newly commissioned relativistic heavy ion collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter quark gluon plasma. PHENIX started data taking for Au+Au collisions at √
Volume 87 Issue 6 December 2016 Article ID 0092 Regular
Plastic scintillator-based hodoscope for the characterization of large-area resistive plate chambers
V K S KASHYAP C YADAV S T SEHGAL R SEHGAL R G THOMAS L M PANT A K MOHANTY
A scintillator-based hodoscope is fully operational at Nuclear Physics Division, Bhabha Atomic Research Centre (NPD-BARC). It was used for characterizing the resistive plate chambers (RPCs) assembled for the RE4 upgrade for the compact muon solenoid (CMS) experiment, installed during the long shut-down (LS1) using cosmic muons. It has now been employed for R & D related to gas mixtures and glass RPCs for the Indiabased neutrino observatory (INO) and muon tomography studies. The hodoscope is equipped with gas flow lines,LV, HV and VME-based DAQ with multihit TDCs. CERN-based software was adapted, implemented and along with the cosmic trigger, was used to evaluate the functional parameters for the RPCs, such as efficiency, clustersize etc.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.