• A DURGA DEVI

      Articles written in Pramana – Journal of Physics

    • Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter

      A DURGA DEVI K KRISHNAKUMAR R SINUVASAN P G L LEACH

      More Details Abstract Fulltext PDF

      We study the symmetry and integrability of a modified Camassa–Holm equation (MCH), with an arbitrary parameter $k$, of the form $u_t + k(u − u_{xx})^{2}u_x − u_{xxt} + (u^2 − u_x^2)(u_x − u_{xxx} ) = 0.$ The commutator table and adjoint representation of the symmetries are presented to construct one-dimensional optimal system. By using the one-dimensional optimal system, we reduce the order or number of independent variables of the above equation and also we obtain interesting novel solutions for the reduced ordinary differential equations. Finally, we apply the Painlevé test to the resultant nonlinear ordinary differential equation and it is observed that the equation is integrable.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.