• ARUN K JAIN

      Articles written in Pramana – Journal of Physics

    • Decoupling potentials for the three-body final state Schrödinger equation of knockout reactions

      Arun K Jain

      More Details Abstract Fulltext PDF

      In the conventional distorted wave impulse approximation (DWIA) approach the three-body final state of a knockout reaction is decoupled by assuming a plane wave form for the coupling term. The influence of this decoupling approximation on the analyses of cluster knockout reactions has been investigated for a test case where the exact solution is obtainable. A proper treatment of the coupling term causes large oscillations in the effective distorting optical potentials for the decoupled Schrödinger equation. These decoupling potentials depend strongly not only on the partial wave angular momentum,l but also on their azimuthal projection,m.

    • Search for $^{12}$C+$^{12}$C clustering in $^{24}$Mg ground state

      B N JOSHI ARUN K JAIN D C BISWAS B V JOHN Y K GUPTA L S DANU R P VIND G K PRAJAPATI S MUKHOPADHYAY A SAXENA

      More Details Abstract Fulltext PDF

      In the backdrop of many models, the heavy cluster structure of the ground state of $^{24}$Mg has been probed experimentally for the first time using the heavy cluster knockout reaction $^{24}$Mg($^{12}$C, $^{212}$C)$^{12}$C in thequasifree scattering kinematic domain. In the ($^{12}$C, $^{212}$C) reaction, the direct $^{12}$C-knockout cross-section was found to be very small. Finite-range knockout theory predictions were much larger for ($^{12}$C, 212C) reaction,indicating a very small $^{12}$C−$^{12}$C clustering in $^{24}$Mg(g.s.). Our present results contradict most of the proposed heavy cluster ($^{12}$C+$^{12}$C) structure models for the ground state of $^{24}$Mg.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.