AMIT KUMAR PANDEY
Articles written in Pramana – Journal of Physics
Volume 95 All articles Published: 3 February 2021 Article ID 0005 Research Article
AMIT KUMAR PANDEY SOHITA RAJPUT KRISHNENDU BHATTACHARYYA PRECIOUS SIBANDA
This paper deals with a detailed investigation of the effects of various metal oxide nanoparticles on unsteady stagnation point flow of a hybrid base fluid impinging on a flat surface. The ‘single-phase’ nanofluid model, i.e., the Tiwari and Das model, is considered for the study. We consider water and ethylene glycol in 1:1 ratio as the base fluid and four different types of metal oxides, namely, CuO, TiO$_2$, ZnO and MgO as the nanoparticles. Using similarity transformations, the conservation equations are transformed into self-similar ordinary differential equations. Dual and unique similarity solutions are obtained for certain set of values of parameters. The analysis explores many important findings. Dual self-similar solutions exist up to a certain critical value of the decelerating unsteady parameter and the critical value is independent of the type of metal oxide nanoparticles considered. The strongest surface drag force is observed for the nanofluid with CuO nanoparticles, while the weakest is for the nanofluid with MgO nanoparticles. The heat transfer rate is highest for the nanofluid with CuO nanoparticles and lowest for the nanofluid with TiO$_2$ nanoparticles. Also, the boundary layer is thickest for the nanofluid with MgO nanoparticles.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.