• A Jain

      Articles written in Pramana – Journal of Physics

    • A high-performance, low-cost, leading edge discriminator

      S K Gupta Y Hayashi A Jain S Karthikeyan S Kawakami K C Ravindran S C Tonwar

      More Details Abstract Fulltext PDF

      A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discriminators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a timing error of 90 ps. It has an intrinsic double pulse resolution of 4 ns which is better than most commercial discriminators. A low-cost discriminator is an essential requirement of the GRAPES-3 experiment where a large number of discriminator channels are used.

    • Structural and magnetic properties of the layered compound Ca2.375La0.125Sr0.5GaMn2O8

      A K Bera S M Yusuf A Jain

      More Details Abstract Fulltext PDF

      The brownmillerite-type layered compound Ca2.375La0.125Sr0.5GaMn2O8 has been synthesized. The crystal and magnetic structures have been refined by the Rietveld analysis of the neutron powder diffraction patterns at 300 and 20 K. This compound crystallizes in the orthorhombic symmetry under the space group Pcm21 ($a = 5.447(2)$, $b = 11.359(4)$ and $c = 5.322(2)$ Å). The compound is found to be antiferromagnetic at 20 K. The ordered Mn magnetic moment, aligned along the crystallographic 𝑏-direction, is derived to be $2.53(5) \mu_{B}$ per Mn ion at 20 K.

    • Solar diurnal anisotropy measured using muons in GRAPES-3 experiment in 2006

      P K Mohanty D Atri S R Dugad S K Gupta B Hariharan Y Hayashi A Jain S Kawakami S D Morris P K Nayak A Oshima B S Rao

      More Details Abstract Fulltext PDF

      The GRAPES-3 experiment at Ooty contains a large-area (560 m$^{2}$) tracking muon detector. This detector consists of 16 modules, each 35 m$^{2}$ in area, that are grouped into four supermodules of 140 m$^{2}$ each. The threshold energy of muons is $\sec(\theta)$ GeV along a direction with zenith angle $\theta$ and the angular resolution of the muon detector is $6^{\circ}$. Typically, it records $\sim 4 \times 10^{9}$ muons every day. The muon detector has been operating uninterruptedly since 2001, thus providing a high statistics record of the cosmic ray flux as a function of time over one decade. However, prior to using these data, the muon rate has to be corrected for two important atmospheric effects, namely, variations in atmospheric pressure and temperature. Because of the near equatorial location of Ooty ($11.4^{\circ}$N), the seasonal variations in the atmospheric temperature are relatively small and shall be ignored here. Due to proximity to the equator, the pressure changes at Ooty display a dominant 12 h periodic behaviour in addition to other seasonal changes. Here, we discuss various aspects of a novel method for accurate pressure measurement and subsequent corrections applied to the GRAPES-3 muon data to correct these pressure-induced variations. The pressure-corrected muon data are used to measure the profile of the solar diurnal anisotropy during 2006. The data, when divided into four segments, display significant variation both in the amplitude ($\sim 45\%$) and phase ($\sim42$ m) of the solar diurnal anisotropy during 2006, which was a period of relatively low solar activity.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.