A G Wagh
Articles written in Pramana – Journal of Physics
Volume 71 Issue 4 October 2008 pp 877-885 Invited Papers
Small-angle neutron scattering study of structural evolution of different phases in protein solution
V K Aswal S Chodankar J Kohlbrecher R Vavrin A G Wagh
Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein{surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.
Volume 71 Issue 5 November 2008 pp 1021-1025 Small Angle Neutron Scattering
Small angle neutron scattering studies on protein denaturation induced by different methods
S Chodankar V K Aswal J Kohlbrecher R Vavrin A G Wagh
Small angle neutron scattering (SANS) has been used to study conformational changes in protein bovine serum albumin (BSA) as induced by varying temperature and in the presence of protein denaturating agents urea and surfactant. BSA has pro-late ellipsoidal shape and is found to be stable up to 60°C above which it denaturates and subsequently leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C, with fractal dimension increasing with temperature. BSA protein is found to unfold in the presence of urea at concentrations greater than 4 M and acquires a random coil Gaussian chain conformation. The conformation of the unfolded protein in the presence of surfactant has been determined directly using contrast variation SANS measurements by contrast matching surfactant molecules. The protein acquires a random coil Gaussian conformation on unfolding with its radius of gyration increasing with increase in surfactant concentration
Volume 71 Issue 5 November 2008 pp 1045-1049 Small Angle Neutron Scattering
SANS measurements have been performed on mixed systems of ionic surfactant sodium dodecyl sulphate (SDS) and nonionic surfactant polyoxyethylene 10 lauryl ether (C12E10). The total concentration of the mixed system was kept fixed (10 wt%) and the ionic to nonionic surfactant ratio varied in the range 0 to 1. The temperature effect on the structures of mixed micelles has been studied for temperatures between 30 and 75° C. Micelles of pure ionic and nonionic surfactants show opposite trends when the temperature is increased. Sizes of pure ionic micelles decrease and those of nonionic micelles increase with increase in temperature. We show a formulation balancing these two effects which is temperature-independent and consists of about 25% of ionic surfactants in the mixed system. Contrast variation SANS measurements by contrast matching one of the surfactant components to the solvent suggest homogeneous single mixed micelles of the two components in the mixed systems.
Volume 71 Issue 5 November 2008 pp 1051-1055 Small Angle Neutron Scattering
Pressure-induced structural transition of nonionic micelles
V K Aswal R Vavrin J Kohlbrecher A G Wagh
We report dynamic light scattering and small angle neutron scattering studies of the pressure-induced structural transition of nonionic micelles of surfactant polyoxyethylene 10 lauryl ether (C12E10) in the pressure range 0 to 2000 bar. Measurements have been performed on 1 wt% C12E10 in aqueous solution with and without the addition of KF. Micelles undergo sphere to lamellar structural transitions as the pressure is increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible.
Volume 71 Issue 5 November 2008 pp 1075-1078 Small Angle Neutron Scattering
The morphology of carbon nanofoam samples comprising platinum nanoparticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature and the average radius of the platinum particles is about 2.5 nm. The fractal dimension as well as the size distribution parameters of platinum particles varies markedly with the platinum content and annealing temperature. Transmission electron micrographs of the samples corroborate the SANS and SAXS results.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.