A A Fouladi
Articles written in Pramana – Journal of Physics
Volume 72 Issue 6 June 2009 pp 1023-1036 Research Articles
Transport properties of poly(GACT)–poly(CTGA) deoxyribonucleic acid: A ladder model approach
In this paper, based on the tight-binding Hamiltonian model and within the framework of a generalized Green's function technique, the electronic conduction through the poly(GACT)–poly(CTGA) DNA molecule in SWNT/DNA/SWNT structure has been numerically investigated. In a ladder model, we consider DNA as a planar molecule containing 𝑀 cells and four further sites (two base pair sites and two backbone sites) in each cell, sandwiched between two semi-infinite single-walled carbon nanotubes (SWNT) as the electrodes. Having relied on Landauer formalism, we focussed on studying the current–voltage characteristics of DNA, the effect of the coupling strength of SWNT/DNA interface and the role of tube radius of nanotube contacts on the electronic transmission through the foregoing structure. Finally, a characteristic time was calculated for the electron transmission, which measures the delay caused by the tunnelling through the SWNT/DNA interface. The results clearly show that the calculated characteristic time and also the conductance of the system are sensitive to the coupling strength between DNA molecule and nanotube contacts.
Volume 96, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.