Valeriy G Bardakov
Articles written in Proceedings – Mathematical Sciences
Volume 127 Issue 1 February 2017 pp 99-108 Research Article
Palindromic widths of nilpotent and wreath products
Valeriy G Bardakov Oleg V Bryukhanov Krishnendu Gongopadhyay
We prove that the nilpotent product of a set of groups $A_1, \ldots , A_s$ has finite palindromic width if and only if the palindromic widths of $A_i$, $i = 1, \ldots , s$, are finite. We give a new proof that the commutator width of $F_n \wr K$ is infinite, where $F_n$ is a free group of rank $n\geq 2$ and $K$ is a finite group. This result, combining with a result of Fink [9] gives examples of groups with infinite commutator width but finite palindromic width with respect to some generating set.
Volume 130, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.