• Tej Bahadur Singh

      Articles written in Proceedings – Mathematical Sciences

    • On the Cohomology of Orbit Space of Free $\mathbb{Z}_p$-Actions on Lens Spaces

      Hemant Kumar Singh Tej Bahadur Singh

      More Details Abstract Fulltext PDF

      Let $G=\mathbb{Z}_p, p$ an odd prime, act freely on a finite-dimensional $CW$-complex 𝑋 with $\mathrm{mod} p$ cohomology isomorphic to that of a lens space $L^{2m-1}(p;q_1,\ldots,q_m)$. In this paper, we determine the $\mathrm{mod} p$ cohomology ring of the orbit space $X/G$, when $p^2\nmid m$

    • The Cohomology of Orbit Spaces of Certain Free Circle Group Actions

      Hemant Kumar Singh Tej Bahadur Singh

      More Details Abstract Fulltext PDF

      Suppose that $G=\mathbb{S}^1$ acts freely on a finitistic space 𝑋 whose (mod 𝑝) cohomology ring is isomorphic to that of a lens space $L^{2m-1}(p;q_1,\ldots,q_m)$ or $\mathbb{S}^1\times\mathbb{C}P^{m-1}$. The mod 𝑝 index of the action is defined to be the largest integer 𝑛 such that $\alpha^n\neq 0$, where $\alpha\in H^2(X/G;\mathbb{Z}_p)$ is the nonzero characteristic class of the $\mathbb{S}^1$-bundle $\mathbb{S}^1\hookrightarrow X\to X/G$. We show that the mod 𝑝 index of a free action of 𝐺 on $\mathbb{S}^1\times\mathbb{C}P^{m-1}$ is $p-1$, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free 𝐺-action on $\mathbb{S}^1\times\mathbb{C}P^{m-1}$. It is note worthy that the mod 𝑝 index for free 𝐺-actions on the cohomology lens space is not defined.

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.