• R C Soni

      Articles written in Proceedings – Mathematical Sciences

    • On unified fractional integral operators

      K C Gupta R C Soni

      More Details Abstract Fulltext PDF

      The present paper is in continuation to our recent paper [6] in these proceedings. Therein, three composition formulae for a general class of fractional integral operators had been established. In this paper, we develop the Mellin transforms and their inversions, the Mellin convolutions, the associated Parseval-Goldstein theorem and the images of the multivariableH-function together with applications for these operators. In all, seven theorems and two corollaries (involving the Konhauser biorthogonal polynomials and the Jacobi polynomials) have been established in this paper. On account of the most general nature of the polynomials Snm[x] and the multivariableH-function whose product form the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials and special functions (involving one or more variables) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. We give here exact references to the results (in essence) of seven research papers which follow as simple special cases of our theorems.

    • Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariableH-function

      R C Soni Deepika Singh

      More Details Abstract Fulltext PDF

      In the present paper, we obtain three unified fractional derivative formulae (FDF). The first involves the product of a general class of polynomials and the multivariableH-function. The second involves the product of a general class of polynomials and two multivariableH-functions and has been obtained with the help of the generalized Leibniz rule for fractional derivatives. The last FDF also involves the product of a general class of polynomials and the multivariableH-function but it is obtained by the application of the first FDF twice and it involves two independent variables instead of one. The polynomials and the functions involved in all our fractional derivative formulae as well as their arguments which are of the typexρ Πi=1s (xti+αi)σi are quite general in nature. These formulae, besides being of very general character have been put in a compact form avoiding the occurrence of infinite series and thus making them useful in applications. Our findings provide interesting unifications and extensions of a number of (new and known) results. For the sake of illustration, we give here exact references to the results (in essence) of five research papers [2, 3,10, 12, 13] that follow as particular cases of our findings. In the end, we record a new fractional derivative formula involving the product of the Hermite polynomials, the Laguerre polynomials and the product ofr different Whittaker functions as a simple special case of our first formula.

  • Proceedings – Mathematical Sciences | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.