PRIYADWIP DAS
Articles written in Proceedings – Mathematical Sciences
Volume 129 Issue 2 April 2019 Article ID 0018 Research Article
Generalized skew-derivations annihilating and centralizing on multilinear polynomials in prime rings
PRIYADWIP DAS BASUDEB DHARA SUKHENDU KAR
Let $R$ be a prime ring of characteristic $\neq 2$, $Qr$ its right Martindale quotient ring, $C$ its extended centroid, $F \neq 0$ a generalized skew derivation of $R, f (x_{1}, . . . , x_{n})$ a multilinear polynomial over $C$ not central-valued on $R$ and $S$ the set of all evaluations of $f (x_{1}, . . . , x_{n})$ in $R$. If $a[F(x), x] \in C$ for all $x \in S$, then there exist $\lambda \in C$ and $b \in Qr$ such that $F(x) = bx + xb + \lambda x$, for all $x \in R$ and one of the following holds:(1) $b \in C$;(2) $f (x_{1}, . . . , x_{n})^{2}$ is central-valued on $R$;(3) $R$ satisfies $s_{4}$, the standered identity of degree 4.
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.