• Makoto Minamide

      Articles written in Proceedings – Mathematical Sciences

    • On Partial Sums of a Spectral Analogue of the Möbius Function

      Kalyan Chakraborty Makoto Minamide

      More Details Abstract Fulltext PDF

      Sankaranarayanan and Sengupta introduced the function $\mu^∗(n)$ corresponding to the Möbius function. This is defined by the coefficients of the Dirichlet series $1/L_f(s)$, where $L_f(s)$ denotes the 𝐿-function attached to an even Maaß cusp form 𝑓. We will examine partial sums of $\mu^∗(n)$. The main result is $\Sigma_{n\leq x}\mu^∗(n)=O(x \exp(-A\sqrt{\log x}))$, where 𝐴 is a positive constant. It seems to be the corresponding prime number theorem.

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.