• Krishnendu Gongopadhyay

      Articles written in Proceedings – Mathematical Sciences

    • Palindromic widths of nilpotent and wreath products

      Valeriy G Bardakov Oleg V Bryukhanov Krishnendu Gongopadhyay

      More Details Abstract Fulltext PDF

      We prove that the nilpotent product of a set of groups $A_1, \ldots , A_s$ has finite palindromic width if and only if the palindromic widths of $A_i$, $i = 1, \ldots , s$, are finite. We give a new proof that the commutator width of $F_n \wr K$ is infinite, where $F_n$ is a free group of rank $n\geq 2$ and $K$ is a finite group. This result, combining with a result of Fink [9] gives examples of groups with infinite commutator width but finite palindromic width with respect to some generating set.

    • $z$-Classes in finite groups of conjugate type ($n$, 1)

      SHIVAM ARORA KRISHNENDU GONGOPADHYAY

      More Details Abstract Fulltext PDF

      Two elements in a group $G$ are said to be $z$-equivalent or to be in the same $z$-class if their centralizers are conjugate in $G$. In a recent work, Kulkarni et al. (J. Algebra Appl., 15 (2016) 1650131) proved that a non-abelian $p$-group $G$ can have at most $\frac{p^{k}−1}{p−1} + 1$ number of $z$-classes, where $|G/Z(G)| = p^{k}$ . Here, we characterize the $p$-groups of conjugate type ($n$, 1) attaining this maximal number. As a corollary, we characterize $p$-groups having prime order commutator subgroup and maximal number of $z$-classes.

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.