Kamran Divaani-Aazar
Articles written in Proceedings – Mathematical Sciences
Volume 115 Issue 1 February 2005 pp 51-56
Localization of tight closure in two-dimensional rings
Kamran Divaani-Aazar Massoud Tousi
It is shown that tight closure commutes with localization in any two-dimensional ring
Volume 119 Issue 1 February 2009 pp 23-35
Vanishing of the Top Local Cohomology Modules over Noetherian Rings
Let 𝑅 be a (not necessarily local) Noetherian ring and 𝑀 a finitely generated 𝑅-module of finite dimension 𝑑. Let $\mathfrak{a}$ be an ideal of 𝑅 and $\mathfrak{M}$ denote the intersection of all prime ideals $\mathfrak{p}\in\mathrm{Supp}_R H^d_a(M)$. It is shown that
$$H^d_a(M)\simeq H^d_{\mathfrak{M}}(M)/\sum\limits_{n\in\mathbb{N}}\langle \mathfrak{M}\rangle(0:_{H^d_{\mathfrak{M}}(M)}a^n),$$
where for an Artinian 𝑅-module 𝐴 we put $\langle\mathfrak{M}\rangle A=\cap_{n\in\mathbb{N}}\mathfrak{M}^n A$. As a consequence, it is proved that for all ideals $\mathfrak{a}$ of 𝑅, there are only finitely many non-isomorphic top local cohomology modules $H^d_a(M)$ having the same support. In addition, we establish an analogue of the Lichtenbaum–Hartshorne vanishing theorem over rings that need not be local.
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.