K Khashyarmanesh
Articles written in Proceedings – Mathematical Sciences
Volume 118 Issue 2 May 2008 pp 197-206 Research Articles
On the Finiteness Properties of Matlis Duals of Local Cohomology Modules
K Khashyarmanesh F Khosh-Ahang
Let 𝑅 be a complete semi-local ring with respect to the topology defined by its Jacobson radical, $\mathfrak{a}$ an ideal of 𝑅, and 𝑀 a finitely generated 𝑅-module. Let $D_R(-):=\mathrm{Hom}_R(-,E)$, where 𝐸 is the injective hull of the direct sum of all simple 𝑅-modules. If 𝑛 is a positive integer such that $\mathrm{Ext}^j_R(R/\mathfrak{a},D_R(H^t_{\mathfrak{a}}(M)))$ is finitely generated for all $t>n$ and all $j\geq 0$, then we show that $\mathrm{Hom}_R(R/\mathfrak{a},D_R(H^n_{\mathfrak{a}}(M)))$ is also finitely generated. Specially, the set of prime ideals in $\mathrm{Coass}_R(H^n_{\mathfrak{a}}(M))$ which contains $\mathfrak{a}$ is finite.
Next, assume that $(R,\mathfrak{m})$ is a complete local ring. We study the finiteness properties of $D_R(H^r_{\mathfrak{a}}(R))$ where 𝑟 is the least integer 𝑖 such that $H^i_{\mathfrak{a}}(R)$ is not Artinian.
Volume 128 Issue 1 February 2018 Article ID 0009 Research Article
A generalization of zero divisor graphs associated to commutative rings
M AFKHAMI A ERFANIAN K KHASHYARMANESH N VAEZ MOOSAVI
Let $R$ be a commutative ring with a nonzero identity element. For a natural number $n$, we associate a simple graph, denoted by $\Gamma^{n}_{R}$, with $R^{n}\backslash\{0\}$ as the vertex set and two distinct vertices $X$ and $Y$ in $R^{n}$ being adjacent if and only if there exists an $n\times n$ lower triangular matrix $A$ over $R$ whose entries on the main diagonal are nonzero and one of the entries on the main diagonal is regular such that $X^{T} AY = 0$ or $Y^{T} AX = 0$, where, for a matrix $B$, $B^{T}$ is the matrix transpose of $B$. If $n = 1$, then $\Gamma^{n}_{R}$ is isomorphic to the zero divisor graph $\Gamma(R)$, and so $\Gamma^{n}_{R}$ is a generalization of $\Gamma(R)$ which is called a generalized zero divisor graph of $R$. In this paper, we study some basic properties of $\Gamma^{n}_{R}$. We also determine all isomorphic classes of finite commutative rings whose generalized zero divisor graphs have genus at most three.
Volume 130, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.