• I V Volovich

      Articles written in Proceedings – Mathematical Sciences

    • A generalization of the riemann zeta-function

      K Ramachandra I V Volovich

      More Details Abstract Fulltext PDF

      A generalization of the Riemann zeta-function which has the form$$\zeta _\alpha (s) = \prod\limits_p {\frac{1}{{1 - p^{ - s} + (p + a)^{ - 3} }}} $$ is considered. Analytical properties with respect to s and asymptotic behaviour whena → ∞ are investigated. The correspondingL-function is also discussed. This consideration has an application in the theory ofp-adic strings.

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.