• H V Dedania

      Articles written in Proceedings – Mathematical Sciences

    • Uniqueness of the uniform norm and adjoining identity in Banach algebras

      S J Bhatt H V Dedania

      More Details Abstract Fulltext PDF

      LetAe be the algebra obtained by adjoining identity to a non-unital Banach algebra (A, ∥ · ∥). Unlike the case for aC*-norm on a Banach *-algebra,Ae admits exactly one uniform norm (not necessarily complete) if so doesA. This is used to show that the spectral extension property carries over fromA to Ae. Norms onAe that extend the given complete norm ∥ · ∥ onA are investigated. The operator seminorm ∥ · ∥op onAe defined by ∥ · ∥ is a norm (resp. a complete norm) iffA has trivial left annihilator (resp. ∥ · ∥op restricted toA is equivalent to ∥ · ∥).

    • Beurling algebra analogues of the classical theorems of Wiener and Lévy on absolutely convergent fourier series

      S J Bhatt H V Dedania

      More Details Abstract Fulltext PDF

      Letf be a continuous function on the unit circle Γ, whose Fourier series is ω-absolutely convergent for some weight ω on the set of integersZ. If f is nowhere vanishing on Γ, then there exists a weightv onZ such that 1/f hadv-absolutely convergent Fourier series. This includes Wiener’s classical theorem. As a corollary, it follows that if φ is holomorphic on a neighbourhood of the range off, then there exists a weight Χ on Z such that φ ◯f has Χ-absolutely convergent Fourier series. This is a weighted analogue of Lévy’s generalization of Wiener’s theorem. In the theorems,v and Χ are non-constant if and only if ω is non-constant. In general, the results fail ifv or Χ is required to be the same weight ω.

    • A note on generalized characters

      S J Bhatt H V Dedania

      More Details Abstract Fulltext PDF

      For a compactly generated LCA group G, it is shown that the setH(G) of all generalized characters on G equipped with the compact-open topology is a LCA group andH(G) = Ĝ (the dual group ofG) if and only ifG is compact. Both results fail for arbitrary LCA groups. Further, ifG is second countable, then the Gel’fand space of the commutative convolution algebraCc(G) equipped with the inductive limit topology is topologically homeomorphic toH(G).

    • Multipliers of Weighted Semigroups and Associated Beurling Banach Algebras

      S J Bhatt P A Dabhi H V Dedania

      More Details Abstract Fulltext PDF

      Given a weighted discrete abelian semigroup $(S,\omega)$, the semigroup $M_\omega(S)$ of 𝜔-bounded multipliers as well as the Rees quotient $M_\omega(S)/S$ together with their respective weights $\overline{\omega}$ and $\overline{\omega}_q$ induced by 𝜔 are studied; for a large class of weights 𝜔, the quotient $\ell^1(M_\omega(S),\overline{\omega})/\ell^1(S,\omega)$ is realized as a Beurling algebra on the quotient semigroup $M_\omega(S)/S$; the Gel’fand spaces of these algebras are determined; and Banach algebra properties like semisimplicity, uniqueness of uniform norm and regularity of associated Beurling algebras on these semigroups are investigated. The involutive analogues of these are also considered. The results are exhibited in the context of several examples.

  • Proceedings – Mathematical Sciences | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.