ELHAM TAVASOLI
Articles written in Proceedings – Mathematical Sciences
Volume 125 Issue 1 February 2015 pp 21-28
Reflexive modules with finite Gorenstein dimension with respect to a semidualizing module
Elham Tavasoli Maryam Salimi Siamak Yassemi
Let 𝑅 be a commutative Noetherian ring and let 𝐶 be a semidualizing 𝑅-module. It is shown that a finitely generated 𝑅-module 𝑀 with finite $G_{C}$-dimension is 𝐶-reflexive if and only if $M_{\mathfrak{p}}$ is $C_{\mathfrak{p}}$-reflexive for $\mathfrak{p}\in \text{Spec} (R)$ with depth $(R_{\mathfrak{p}})\leq 1$, and $G_{C_{\mathfrak{p}}} - \dim R_{\mathfrak{p}}(M_{\mathfrak{p}})\leq $ depth $(R_{\mathfrak{p}}) - 2$ for $\mathfrak{p}\in \text{Spec} (R)$ with depth $(R_{\mathfrak{p}})\geq 2$. As the ring $R$ itself is a semidualizing module, this result gives a generalization of a natural setting for extension of results due to Serre and Samuel (see
Volume 133 All articles Published: 12 January 2023 Article ID 0002 Article
Relative grade and relative Gorenstein dimension with respect to a semidualizing module
Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. For $R$-modules $M$ and $N$, the notions ${\rm grade}_{\mathcal{P}_C}(M, N)$ and ${\rm grade}_{\mathcal{I}_C}(M, N)$are introduced as the relative setting of the notion ${\rm grade}(M, N)$ with respect to $C$. Some results about ${\rm grade}_{\mathcal{P}_C}(M, N)$, ${\rm grade}_{\mathcal{I}_C}(M, N)$ and ${\rm grade}(M, N)$ are mentioned. Forfinitely generated $R$-modules $M$ and $N$, we show that ${\rm grade}_{\mathcal{P}_C}(M, N)= {\rm grade}(M, N)$ (${\rm grade}_{\mathcal{I}_C}(M, N) = {\rm grade}(M, N)$), provided we have some special conditions. Also, thenotions of $C$-perfect and $G_C$-perfect $R$-modules are introduced as the relative setting of the notions of perfect and $G$-perfect $R$-modules with respect to $C$, and it is proven that several results for these new concepts are similar to the classical results. Finally, some results about relative grade of tensor and Hom functors with respect to $C$ are given.
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.