• Basudeb Datta

Articles written in Proceedings – Mathematical Sciences

• Combinatorial manifolds with complementarity

A simplicial complex is said to satisfy complementarity if exactly one of each complementary pair of nonempty vertex-sets constitutes a face of the complex.

We show that if a d-dimensional combinatorial manifold M with n vertices satisfies complementarity then d=0, 2, 4, 8, or 16 with n=3d/2+3 and |M| is a “manifold like a projective plane”. Arnoux and Marin had earlier proved the converse statement.

• Two-dimensional weak pseudomanifolds on eight vertices

We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

• Degree-regular triangulations of torus and Klein bottle

A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In , Lutz has classified all the weakly regular triangulations on at most 15 vertices. In , Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices.

In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists ann-vertex degree-regular triangulation of the Klein bottle if and only if n is a composite number ≥ 9. We have constructed two distinctn-vertex weakly regular triangulations of the torus for eachn ≥ 12 and a (4m + 2)-vertex weakly regular triangulation of the Klein bottle for eachm ≥ 2. For 12 ≤n ≤ 15, we have classified all then-vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.

• Editorial Note on Continuous Article Publication

Posted on July 25, 2019

Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.