A Kameswara Rao
Articles written in Proceedings – Mathematical Sciences
Volume 122 Issue 1 February 2012 pp 139-152
Existence of Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems
K R Prasad A Kameswara Rao S Nageswara Rao
In this paper, we establish the existence of at least one and two positive solutions for the system of higher order boundary value problems by using the Krasnosel'skii fixed point theorem.
Volume 124 Issue 1 February 2014 pp 67-79
K R Prasad A Kameswara Rao B Bharathi
Intervals of the parameters 𝜆 and 𝜇 are determined for which there exist positive solutions to the system of dynamic equations
\begin{align*}(-1)^n u^{\Delta^{2n}}(t)+\lambda p(t) f(\upsilon(\sigma(t)))=0, & t\in[a, b],\\ (-1)^n\upsilon^{\Delta^{2n}} (t) + \mu q(t)g (u(\sigma(t))) = 0, & t\in [a, b],\end{align*}
satisfying the Sturm–Liouville boundary conditions
\begin{align*}& \alpha_{i+1}u^{\Delta^{2i}}(a)-\beta_{i+1}u^{\Delta^{2i+1}}(a)=0, \gamma_{i+1}u^{\Delta^{2i}}(\sigma(b))+\delta_{i+1}u^{\Delta^{2i+1}}(\sigma(b))=0,\\ & \alpha_{i+1}\upsilon^{\Delta^{2i}}(a)-\beta_{i+1}\upsilon^{\Delta^{2i+1}}(a)=0,\gamma_{i+1}\upsilon^{\Delta^{2i}}(\sigma(b))+\delta_{i+1}\upsilon^{\Delta^{2i+1}}(\sigma(b))=0,\end{align*}
for $0\leq i\leq n-1$. To this end we apply a Guo–Krasnosel’skii fixed point theorem.
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.