A K Nandakumaran
Articles written in Proceedings – Mathematical Sciences
Volume 112 Issue 1 February 2002 pp 195-207
Homogenization of a parabolic equation in perforated domain with Neumann boundary condition
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains$$\begin{gathered} \partial _t b(\tfrac{x}{\varepsilon },u_\varepsilon ) - diva(\tfrac{x}{\varepsilon },u_\varepsilon ,\nabla u_\varepsilon ) = f(x,t) in \Omega _\varepsilon \times (0,T), \hfill \\ a(\tfrac{x}{\varepsilon },u_\varepsilon ,\nabla u_\varepsilon ) \cdot v_\varepsilon = 0 on \partial S_\varepsilon \times (0,T), \hfill \\ u_\varepsilon = 0 on \partial \Omega \times (0,T), \hfill \\ u_\varepsilon (x,0) = u_0 (x) in \Omega _\varepsilon \hfill \\ \end{gathered} $$. Here, Ωɛ=Ω
Volume 112 Issue 3 August 2002 pp 425-439
Homogenization of a parabolic equation in perforated domain with Dirichlet boundary condition
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains$$\begin{gathered} \partial _t b(\tfrac{x}{{d_\varepsilon }},u_\varepsilon ) - div a(u_\varepsilon , \nabla u_\varepsilon ) = f(x,t) in \Omega _\varepsilon x (0, T), \hfill \\ u_\varepsilon ) = 0 on \partial \Omega _\varepsilon x (0, T), \hfill \\ u_\varepsilon (x, 0) = u_0 (x) in \Omega _\varepsilon . \hfill \\ \end{gathered} $$. Here, Ωɛ
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.