• Wenyuan Cui

      Articles written in Journal of Astrophysics and Astronomy

    • Evolution of the Distribution of Neutron Exposures in the Galaxy Disc: An Analytical Model

      Wenyuan Cui Weijuan Zhang Bo Zhang

      More Details Abstract Fulltext PDF

      In this work, based on the analytical model with delayed production approximation developed by Pagel & Tautvaišienė (1995) for the Galaxy, the analytic solutions of the distribution of neutron exposures of the Galaxy (hereafter NEG) are obtained. The present results appear to reasonably reproduce the distribution of neutron exposures of the solar system (hereafter NES). The strong component and the main component of the NES are built up in different epochs. Firstly, the strong component is produced by the s-process nucleosynthesis in the metal-poor AGB stars, starting from [Fe/H] ≈ -1.16 to [Fe/H] ≈ -0.66, corresponding to the time interval 1.06 < 𝑡 < 2.6 Gyr. Secondly, the main component is produced by the s-process in the galactic disk AGB stars, starting from [Fe/H] ≈ -0.66 to [Fe/H] ≈ 0, corresponding to the time interval 𝑡 > 2.6 Gyr. The analytic solutions have the advantage of an understanding of the structure and the properties of the NEG. The NEG is believed to be an effective tool to study the s-process element abundance distributions in the Galaxy at different epochs and the galactic chemical evolution of the neutron-capture elements.

    • Puzzling Origin of CEMP-r/s Stars: An Interpretation of Abundance and Enrichment of s- and r-Process Elements from Asymptotic Giant Branch Supernovae

      Jiang Zhang Fang Zhao Yanping Chen Wenyuan Cui Bo Zhang

      More Details Abstract Fulltext PDF

      CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10-9𝑀 ∼ 5 × 10-9𝑀. Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter 𝑓, standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the gravitational focusing effect of the companion.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.