• Sravani Vaddi

      Articles written in Journal of Astrophysics and Astronomy

    • Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

      Ananda Hota C. Konar C. S. Stalin Sravani Vaddi Pradeepta K. Mohanty Pratik Dabhade Sai Arun Dharmik Bhoga Megha Rajoria Sagar Sethi

      More Details Abstract Fulltext PDF

      We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.

    • The sharpest ultraviolet view of the star formation in an extreme environment of the nearest Jellyfish Galaxy IC 3418


      More Details Abstract Fulltext PDF

      We present the far ultraviolet (FUV) imaging of the nearest Jellyfish or Fireball galaxy IC3418/VCC 1217, in the Virgo cluster of galaxies, using Ultraviolet Imaging Telescope (UVIT) onboard the AstroSat satellite. The young star formation observed here in the 17 kpc long turbulent wake of IC3418,due to ram pressure stripping of cold gas surrounded by hot intra-cluster medium, is a unique laboratory that is unavailable in the Milky Way. We have tried to resolve star forming clumps, seen compact to GALEX UV images, using better resolution available with the UVIT and incorporated UV-optical imagesfrom Hubble Space Telescope archive. For the first time, we resolve the compact star forming clumps (fireballs) into sub-clumps and subsequently into a possibly dozen isolated stars. We speculate that many of them could be blue supergiant stars which are cousins of SDSS J122952.66$+$112227.8, the farthest star($\sim$17 Mpc) we had found earlier surrounding one of these compact clumps. We found evidence of star formation rate ($4–7.4 \times 10^{–4} \ M_{\odot}$ yr$^{–1}$) in these fireballs, estimated from UVIT flux densities, to beincreasing with the distance from the parent galaxy. We propose a new dynamical model in which the stripped gas may be developing vortex street where the vortices grow to compact star forming clumps due to self-gravity. Gravity winning over turbulent force with time or length along the trail can explain thepuzzling trend of higher star formation rate and bluer/younger stars observed in fireballs farther away from the parent galaxy.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.