• Sharanya Sur

      Articles written in Journal of Astrophysics and Astronomy

    • Probing Magnetic Fields with Square Kilometre Array and its Precursors

      Subhashis Roy Sharanya Sur Kandaswamy Subramanian Arun Mangalam T. R. Seshadri Hum Chand

      More Details Abstract Fulltext PDF

      Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various models of field configurations with observations.

    • Exploring diffuse radio emission in galaxy clusters and groups with uGMRT and SKA


      More Details Abstract Fulltext PDF

      Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large scale structure of the Universe. Since the radio emission in galaxy systems is faint and its spectrum is steep, itsobservations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The recent commissioning or upgrade of several large radio telescope arrays, particularly at the low frequency bands (<GHz) is, therefore, a significant step forward. The unprecedented sensitivity of these new instruments, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality and revolutionised the study of cluster-scale radio emission. At the same time, the development of state-of-the-art numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modelling of radio emission, and the structure of the cosmic magnetic fields, associated with large-scale structures inthe Universe, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving developments in modeling and observations, in this review, we summarise the role of new telescopearrays and the development of advanced imaging techniques and discuss the range of detections of various kinds of cluster radio sources, both in dedicated surveys as well as in numerous individual studies. We pay specific attention to the kinds of diffuse radio structures that have been able to reveal the underlying physics in recent observations. In particular, we discuss observations of large-scale sections of the cosmic web in the form of supercluster filaments, and studies of emission in low-mass systems, such as poor clusters and groups ofgalaxies, and of ultra-steep spectrum sources, the last two being notably aided by low-frequency observations and high sensitivity of the instruments being developed. We also discuss and review the current theoreticalunderstanding of various diffuse radio sources in clusters and the associated magnetic field and polarisation in view of the current observations and simulations. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on the intrinsic properties of these sources. We conclude by summarising the role of the upgraded GMRT (uGMRT) and our expectations from the upcoming Square Kilometre Array (SKA) observatories.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.