SOURAV PALIT
Articles written in Journal of Astrophysics and Astronomy
Volume 42 All articles Published: 3 July 2021 Article ID 0069 SCIENCE RESULTS
SOURAV PALIT AKASH ANUMARLAPUDI VARUN BHALERAO
A considerable fraction of incident high energy photons from astrophysical transients such as Gamma Ray Bursts (GRBs) is Compton scattered by the Earth’s atmosphere. These photons, sometimes referred to as the ‘‘reflection component’’, contribute to the signal detected by space-borne X-ray/c-rayinstruments. The effectiveness and reliability of source parameters such as position, flux, spectra and polarization, inferred by these instruments are therefore highly dependent on the accurate estimation of this scattered component. Current missions use dedicated response matrices to account for these effects. However, these databases are not readily adaptable for other missions, including many upcoming transient search and gravitational wave high-energy electromagnetic counter part detectors. Furthermore, possible systematiceffects in these complex simulations have not been thoroughly examined and verified in literature. We are in the process of investigation of the effect with a detailed Monte Carlo simulations in GEANT4 for a Low Earth Orbit (LEO) X-ray detector. Here, we discuss the outcome of our simulation in form of AtmosphericResponse Matrix (ARM) and its implications of any systematic errors in the determination of source spectral characteristics. We intend to apply our results in data processing and analysis for AstroSat-CZTI observation of such sources in near future. Our simulation output and source codes will be made publicly available for use by the large number of upcoming high energy transient missions, as well as for scrutiny and systematic comparisons with other missions.
Volume 42 All articles Published: 21 July 2021 Article ID 0082 SCIENCE RESULTS
Sub-MeV spectroscopy with AstroSat-CZT imager for gamma ray bursts
TANMOY CHATTOPADHYAY SOUMYA GUPTA VIDUSHI SHARMA SHABNAM IYYANI AJAY RATHEESH N. P. S. MITHUN E. AARTHY SOURAV PALIT ABHAY KUMAR SANTOSH V. VADAWALE A. R. RAO VARUN BHALERAO DIPANKAR BHATTACHARYA
Cadmium–Zinc–Telluride Imager (CZTI) onboard AstroSat has been a prolific Gamma-Ray Burst (GRB) monitor. While the 2-pixel Compton scattered events (100–300 keV) are used to extract sensitive spectroscopic information, the inclusion of the low-gain pixels ($\sim$20% of the detector plane) aftercareful calibration extends the energy range of Compton energy spectra to 600 keV. The new feature also allows single-pixel spectroscopy of the GRBs to the sub-MeV range which is otherwise limited to 150 keV. We also introduced a new noise rejection algorithm in the analysis (‘Compton noise’). These new additionsnot only enhances the spectroscopic sensitivity of CZTI, but the sub-MeV spectroscopy will also allow proper characterization of the GRBs not detected by
Volume 42 All articles Published: 2 August 2021 Article ID 0093 SCIENCE RESULTS
The AstroSat mass model: Imaging and flux studies of off-axis sources with CZTI
SUJAY MATE TANMOY CHATTOPADHYAY VARUN BHALERAO E. AARTHY ARVIND BALASUBRAMANIAN DIPANKAR BHATTACHARYA SOUMYA GUPTA KRISHNAN KUTTY N. P. S. MITHUN SOURAV PALIT A. R. RAO DIVITA SARAOGI SANTOSH VADAWALE AJAY VIBHUTE
The Cadmium Zinc Telluride Imager (CZTI) on AstroSat is a hard X-ray coded-aperture mask instrument with a primary field-of-view of $4.6^{\circ} \times 4.6^{\circ}$ (FWHM).The instrument collimators become increasinglytransparent at energies above $\sim$100 keV, making CZTI sensitive to radiation from the entire sky. While this has enabled CZTI to detect a large number of off-axis transient sources, calculating the source flux or spectrum requires knowledge of the direction and energy dependent attenuation of the radiation incident upon the detector. Here, we present a GEANT4-based mass model of CZTI and AstroSat that can be used to simulate the satellite response to the incident radiation, and to calculate an effective ‘‘response file’’ for converting the source counts into fluxes and spectra. We provide details of the geometry and interaction physics, and validate the model by comparing the simulations of imaging and flux studies with observations. Spectroscopic validation of the massmodel is discussed in a companion paper, Chattopadhyay
Volume 43 All articles Published: 24 August 2022 Article ID 0053 TRANSIENTS
Gravitational waves and electromagnetic transients
AKSHAT SINGHAL SOURAV PALIT SUMAN BALA GAURAV WARATKAR HARSH KUMAR VARUN BHALERAO
The advanced gravitational wave (GW) detector network has started routine detection of signals from merging compact binaries. Data indicate that in a fair fraction of these sources, at least one component was a neutron star, bringing with it the possibility of electromagnetic (EM) radiation. So far, a confirmed link between EM and GW radiation has been established for only one source, GW170817. Joint analysis ofbroadband multi-wavelength data and the GW signal have yielded rich information spanning fields as varied as jet physics, cosmology and nucleosynthesis. Here, we discuss the importance of such joint observations, as well as current and near-future efforts to discover and study more EM counterparts to GW sources.
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.