• Rajmal Jain

      Articles written in Journal of Astrophysics and Astronomy

    • Eruptive prominences of 1980 april 27 observed during STIP interval — X

      Rajmal Jain A. Bhatnagar R. N. Shelke

      More Details Abstract Fulltext PDF

      Observations and analyses of two similar eruptive prominences on the north-east limb observed on 1980 April 27 at 0231 and 0517 UT, which are associated with the Boulder active region No. 2416 are presented. Both the eruptive prominences gave rise to white-light coronal transients as observed by C/P experiment of High Altitude Observatory on the Solar Maximum Mission. Type II and moving type IV radio bursts are reported in association with the first Hα eruptive prominence at 0231 UT.

      Both the Hα eruptive prominences showed pulse activity with a quasi-periodicity of about 2–4 min. We estimate a magnetic field in the eruptive prominence of about 100 G and a build-up rate ∼ 1026 ergs-1. The high build-up rate indicates that the shearing of the photospheric magnetic field, which fed the energy into the filament, was rapid. It is proposed that fast-moving Hα features must have initiated the observed coronal transients. From Hα, type II and coronal-transient observations, we estimate a magnetic field of 2.8 G at 1.9R⊙ from the disc centre, which agrees well with the earlier results.

    • Flare-associated surge prominence on 1980 october 30

      Rajmal Jain Barkat Sorathia

      More Details Abstract Fulltext PDF

      The Hα observations of a flare-associated surge prominence on 1980 October 30 have been described. Morphology and dynamics of the surge prominence have been presented. From our observations and analysis we have estimated the magnetic field associated with surge material to be about 35 gauss which is in good agreement with the earlier result of Tandberg-Hanssen & Malville (1974). It has been determined that coronal pressure is not acting as a resistive force on the outward expansion of the surge into the corona. The kinetic energy of the surge was about 1028 erg, which is 2 orders less than required for the mass to escape the chromosphere. It appears that the flare-associated surge prominence was perhaps a result of kink instability in the flaring region.

    • Solar x-ray spectrometer (SOXS) mission – Low energy payload – First results

      Rajmal Jain Vishal Joshi S. L. Kayasth Hemant Dave M. R. Deshpande

      More Details Abstract Fulltext PDF

      We present the first results from the ‘Low Energy Detector’ pay-load of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20°C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼1.7keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy (Ep) of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width (ω) of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements ofw with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both Epand ω with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.

    • Data acquisition, control, communication and computation system of solar X-ray spectrometer (SOXS) mission

      Amish B. Shah N. M. Vadher Rajmal Jain Hemant Dave Vishal Shah K. S. B. Manian Satish Kayasth Vinod Patel Girish Ubale Kirit Shah Chirag Solanki M. R. Deshpande Ramkrishna Sharma C. N. Umapathy N. Viswanath Ravi Kulkarni P. S. Kumar

      More Details Abstract Fulltext PDF

      The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV-D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.

    • Study of microflares through soxs mission

      Rajmal Jain Vishal Joshi Yoichiro Hanaoka T. Sakurai Nipa Upadhyay

      More Details Abstract Fulltext PDF

      We present a study of 10 microflares observed in 4–30 keV by SOXS mission simultaneously with Hα observations made at NAOJ, Japan during the interval between February and August 2004. The X-ray and Hα light curves showed that the lifetime of microflares varies between 4 and 25 min. We found that the X-ray emission in all microflares under study in the dynamic energy range of 4–30 keV can be fitted by thermal plus non-thermal components. The thermal spectrum appeared to start from almost 4 keV, low level discriminator (LLD) of both Si and CZT detectors, however it ends below 8 keV. We also observed the Fe line complex features at 6.7 keV in some microflares and attempted to fit this line by isothermal temperature assumption. The temperature of isothermal plasma of microflares varies in the range between 8.6 and 10.1 MK while emission measure between 0.5 and 2x1049 cm-3. Non-thermal (NT) emission appeared in the energy range 7–15 keV with exponent -6.8 ≤γ-4.8. Our study of microflares that had occurred on 25 February 2004 showed that sometimes a given active region produces recurrent microflare activity of a similar nature. We concluded from X-ray and simultaneous Hα observations that the microflares are perhaps the result of the interaction of low lying loops. It appears that the electrons that accelerated during reconnection heat the ambient coronal plasma as well as interact with material while moving down along the loops and thereby produce Hα bright kernels.

    • Editorial

      Rajmal Jain P. Venkatakrishnan Judith T. Karpen

      More Details Abstract Fulltext PDF
    • The Evolution of Vector Magnetic Field Associated with Major Flares in NOAA AR10656

      Shuo Wang Yuanyong Deng Rajmal Jain Vasyl Yurchyshyn Haimin Wang Yuanyuan Liu Zhiliang Yang

      More Details Abstract Fulltext PDF

      In this paper, we study the evolution of vector magnetic field of AR 10656 by using the observations of Huairou Solar Observing Station (HSOS, China) and Big Bear Solar Observatory (BBSO, USA). The magnetic flux emergence and cancellation, and thus, magnetic non-potential changes, are associated with the major flares in this active region. Compared with some other super-active regions, the evolution of magnetic morphologies and non-potentialities are relatively gradual, and thus the energy transportation and release are relatively slow. This gradual process may result in the recurrent flares of AR 10656.

    • X-ray Emission from Solar Flares

      Rajmal Jain Malini Aggarwal Raghunandan Sharma

      More Details Abstract Fulltext PDF

      Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

    • Microflares as Possible Sources for Coronal Heating

      Meera Gupta Rajmal Jain Jayshree Trivedi A. P. Mishra

      More Details Abstract Fulltext PDF

      We present a preliminary study of 27 microflares observed by Solar X-ray Spectrometer (SOXS) mission during July 2003 to August 2006. We found that all 27 microflares show the Fe-line feature peaking around 6.7 keV, which is an indicator of the presence of coronal plasma temperature ≥ 9 MK. On the other hand, the spectra of microflares showhybrid model of thermal and non-thermal emission, which further supports them as possible sources of coronal heating. Our results based on the analysis show that the energy relapsed by the microflares is good enough for heating of the active corona. We discuss our results in the light of the hybrid model of microflares production.

    • X-ray Emission Characteristics of Flares Associated with CMEs

      Malini Aggarwal Rajmal Jain A. P. Mishra P. G. Kulkarni Chintan Vyas R. Sharma Meera Gupta

      More Details Abstract Fulltext PDF

      We present the study of 20 solar flares observed by ``Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented.We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.

    • Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

      John L. Kohl Rajmal Jain Steven R. Cranmer Larry D. Gardner Anil K. Pradhan John C. Raymond Leonard Strachan

      More Details Abstract Fulltext PDF

      Ultraviolet coronagraph observations of the extended solar corona (defined here as 1.5 to 10 solar radii from Sun-center) have become a powerful tool for obtaining detailed empirical descriptions of coronal holes, streamers, and coronal mass ejections. The empirical models resulting from ultraviolet coronagraph observations provide the constraints needed to test and guide theoretical models aimed at determining the physical processes that control solar wind acceleration, CME heating and acceleration, and solar energetic particle (SEP) acceleration. Measurements to date from sounding rockets, the shuttle deployed Spartan 201 satellite and the Solar and Heliospheric Observatory (SOHO) have utilized high resolution spectroscopy over a very limited instantaneous field of view. New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images would provide the absolute intensities of spectral lines that can be used to determine densities and outflow velocities of specific coronal ions. Measurements from several charge states of a given element will allow electron temperatures to be determined. These measurements combined with observations of H I Ly𝛼 provide absolute chemical abundances (relative to hydrogen) for observed elements. Ultraviolet imaging would be highly complementary to a large-aperture ultraviolet coronagraph spectrometer designed for high spectral resolution observations over a small instantaneous field of view. The images would be used to select targets for more detailed spectroscopic studies with the large aperture UV coronagraph spectrometer and to provide time dependent empirical descriptions of the regions surrounding the narrow instantaneous field of view of the large aperture instrument. Descriptions of both the imaging ultraviolet spectrocoronagraph and the large aperture ultraviolet coronagraph spectrometer are provided. Recommended co-observing instruments are described.

    • Predicting Maximum Sunspot Number in Solar Cycle 24

      Nipa J Bhatt Rajmal Jain Malini Aggarwal

      More Details Abstract Fulltext PDF

      A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.

    • Evidence of Decay of Flux Ratio of Fe to Fe–Ni Line Features with Electron Temperature in Solar Flares

      Rajmal Jain Malini Aggarwal Raghunandan Sharma

      More Details Abstract Fulltext PDF

      We report observational evidence of the decay of the flux ratio of Fe to Fe–Ni line features as a function of plasma electron temperature in solar flares in comparison to that theoretically predicted by Phillips (2004). We present the study of spectral analysis of 14 flares observed by the Solar X-ray Spectrometer (SOXS) – Low Energy Detector (SLD) payload. The SLD payload employs the state-of-the-art solid state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices. The sub-keV energy resolution of Si PIN detector allows us to study the Fe-line and Fe–Ni line features appearing at 6.7 and 8 keV, respectively, in greater detail. In order to best-fit the whole spectrum at one time in the desired energy range between 4 and 25 keV we considered Gaussian-line, the multi-thermal power-law and broken power-law functions. We found that the flux ratio of Fe to Fe–Ni line features decays with flare electron temperature by the asymptotic form of polynomial of inverse third order. The relative flux ratio is ∼ 30 at temperature 12 MK which drops to half, ∼ 15 at 20 MK, and at further higher temperatures it decreases smoothly reaching to ∼ 8 at ∼ 50 MK. The flux ratio, however, at a given flare plasma temperature, and its decrease with temperature is significantly lower than that predicted theoretically. We propose that the difference may be due to the consideration of higher densities of Fe and Fe–Ni lines in the theoretical model of Phillips (2004). We suggest revising the Fe and Fe–Ni line densities in the corona. The decay of flux ratio explains the variation of equivalent width and peak energy of these line features with temperature.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

© 2017-2019 Indian Academy of Sciences, Bengaluru.