• Raghunandan Sharma

      Articles written in Journal of Astrophysics and Astronomy

    • X-ray Emission from Solar Flares

      Rajmal Jain Malini Aggarwal Raghunandan Sharma

      More Details Abstract Fulltext PDF

      Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

    • Evidence of Decay of Flux Ratio of Fe to Fe–Ni Line Features with Electron Temperature in Solar Flares

      Rajmal Jain Malini Aggarwal Raghunandan Sharma

      More Details Abstract Fulltext PDF

      We report observational evidence of the decay of the flux ratio of Fe to Fe–Ni line features as a function of plasma electron temperature in solar flares in comparison to that theoretically predicted by Phillips (2004). We present the study of spectral analysis of 14 flares observed by the Solar X-ray Spectrometer (SOXS) – Low Energy Detector (SLD) payload. The SLD payload employs the state-of-the-art solid state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices. The sub-keV energy resolution of Si PIN detector allows us to study the Fe-line and Fe–Ni line features appearing at 6.7 and 8 keV, respectively, in greater detail. In order to best-fit the whole spectrum at one time in the desired energy range between 4 and 25 keV we considered Gaussian-line, the multi-thermal power-law and broken power-law functions. We found that the flux ratio of Fe to Fe–Ni line features decays with flare electron temperature by the asymptotic form of polynomial of inverse third order. The relative flux ratio is ∼ 30 at temperature 12 MK which drops to half, ∼ 15 at 20 MK, and at further higher temperatures it decreases smoothly reaching to ∼ 8 at ∼ 50 MK. The flux ratio, however, at a given flare plasma temperature, and its decrease with temperature is significantly lower than that predicted theoretically. We propose that the difference may be due to the consideration of higher densities of Fe and Fe–Ni lines in the theoretical model of Phillips (2004). We suggest revising the Fe and Fe–Ni line densities in the corona. The decay of flux ratio explains the variation of equivalent width and peak energy of these line features with temperature.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.