• RAMYA SETHURAM

      Articles written in Journal of Astrophysics and Astronomy

    • The sharpest ultraviolet view of the star formation in an extreme environment of the nearest Jellyfish Galaxy IC 3418

      ANANDA HOTA ASHISH DEVARAJ ANANTA C PRADHAN C. S. STALIN KOSHY GEORGE ABHISEK MOHAPATRA SOO-CHANG REY YOUICHI OHYAMA SRAVANI VADDI RENUKA PECHETTI RAMYA SETHURAM JESSY JOSE JAYASHREE ROY CHIRANJIB KONAR

      More Details Abstract Fulltext PDF

      We present the far ultraviolet (FUV) imaging of the nearest Jellyfish or Fireball galaxy IC3418/VCC 1217, in the Virgo cluster of galaxies, using Ultraviolet Imaging Telescope (UVIT) onboard the AstroSat satellite. The young star formation observed here in the 17 kpc long turbulent wake of IC3418,due to ram pressure stripping of cold gas surrounded by hot intra-cluster medium, is a unique laboratory that is unavailable in the Milky Way. We have tried to resolve star forming clumps, seen compact to GALEX UV images, using better resolution available with the UVIT and incorporated UV-optical imagesfrom Hubble Space Telescope archive. For the first time, we resolve the compact star forming clumps (fireballs) into sub-clumps and subsequently into a possibly dozen isolated stars. We speculate that many of them could be blue supergiant stars which are cousins of SDSS J122952.66$+$112227.8, the farthest star($\sim$17 Mpc) we had found earlier surrounding one of these compact clumps. We found evidence of star formation rate ($4–7.4 \times 10^{–4} \ M_{\odot}$ yr$^{–1}$) in these fireballs, estimated from UVIT flux densities, to beincreasing with the distance from the parent galaxy. We propose a new dynamical model in which the stripped gas may be developing vortex street where the vortices grow to compact star forming clumps due to self-gravity. Gravity winning over turbulent force with time or length along the trail can explain thepuzzling trend of higher star formation rate and bluer/younger stars observed in fireballs farther away from the parent galaxy.

    • A 10-m class national large optical-IR telescope

      G. C. ANUPAMA G. MAHESWAR S. SRIRAM T. SIVARANI P. S. PARIHAR S. NAGABHUSHAN DORJE ANGCHUK S. BARWAY B. C. BHATT R. BANYAL ALIKHAN BASHEER PRASANNA DESHMUKH DEVIKA DIVAKAR TSEWANG DORJAI ARUNA GOSWAMI K. V. GOVINDA SONAM JORPHAIL U. S. KAMATH MADAN MOHAN KEMKAR TASHI TSERING MAHAY S. MUNEER C. MUTHUMARIAPPAN SHANTIKUMAR SINGH NINGOMBAM G. PANDEY B. E. REDDY D. K. SAHU D. S. SANDEEP RAMYA SETHURAM C. S. STALIN S. SUBRAMANIAN STANZIN TSEWANG A. SUBRAMANIAM

      More Details Abstract Fulltext PDF

      An observatory class national large optical-IR telescope (NLOT), is proposed to be built and located in the country. The telescope consists of a 10–12 m segmented primary. In order to cater to a diversity of observational programs, the telescope is designed with high throughput in both the optical and IRregions (0.3–5 $\mu$m). It should perform reasonably well up to 30 $\mu$m. The telescope and instruments should have remote operations capability, allowing for the queue as well as classical scheduling and high reliability and robustness. This article provides a brief description of the science cases that drive the telescope requirements, activities related to optics design and some thoughts on the instruments.

    • India-TMT project—science instrumentation program

      THIRUPATHI SIVARANI RAMYA SETHURAM S. SRIRAM DEVIKA DIVAKAR ARUN SURYA HARI MOHAN VARSHNEY SUDARSHAN KAMBALA AMIRUL HASAN AJIN PRAKASH K. V. GOVINDA VISWANATHA G. C. ANUPAMA G. MAHESWAR D. OJHA S. B. PANDEY J. PANDEY M. PURAVANKARA A. N. RAMAPRAKASH B. E. REDDY SARANG S. SHAH R. SRIANAND A. SUBRAMANIAM S. SUBRAMANIAN

      More Details Abstract Fulltext PDF

      The future of astronomy in the coming decades will be shaped by the upcoming three extremely large optical telescopes, the Thirty Meter Telescope (TMT), the Giant Magellan Telescope (GMT) and the European Large Telescope (ELT). The USA astronomy and astrophysics 2020 decadal survey and the Canadian long-range plan for astronomy have recently recommended these large observatories as a top priority for ground-based astronomy for the upcoming decade. India is a 10% partner in one of these large observatories, the TMT, which is jointly funded by the Department of Science and Technology (DST) and Department of Atomic Energy (DAE). Here, we highlight India’s contributions to the development of the telescope and science instruments. The size of back-end science instruments scale with telescope aperture, hence, science instruments for TMT will be the biggest ever built for any telescope. Designing and building them requires broad collaboration within India, across TMT partnership and industries. India contributes >30% of the work share towards the development of wide field optical spectrometer (WFOS). India is part of the development of other first-light instruments, the infrared imaging spectrograph (IRIS) and multi-object diffraction-limited high-resolution infrared spectrograph (MODHIS). Infrared guide star catalog is an important contribution from India to these adaptive optics (AO)-assisted instruments. India leads the development of high-resolution optical spectrograph (HROS), a major workhorse among the first decade instruments of TMT. India is also part of the instrument development team of other first-decade instruments. Concerted efforts have been made to contribute to some of the TMT precursor instruments that will help us to maximize the scientific productivity when TMT is operational, especially in the area of exoplanet science and observations that require AO. India-TMT is part of the science team for the Keck high-resolution infrared spectrograph for exoplanet characterization (HISPEC), a precursor instrument to TMT-MODHIS. In addition, Indian Institute of Astrophysics (IIA) is participating in the science and development of Santa Cruz array of lenslets for exoplanet spectroscopy (SCALES) project for Keck, which is a direct imaging spectrograph for exoplanet studies and a precursor to the TMT planetary system imager.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.