• P. U. KAMATH

      Articles written in Journal of Astrophysics and Astronomy

    • In-orbit Performance of UVIT and First Results

      S. N. Tandon J. B. Hutchings S. K. Ghosh A. Subramaniam G. Koshy V. Girish P. U. Kamath S. Kathiravan A. Kumar J. P. Lancelot P. K. Mahesh R. Mohan J. Murthy S. Nagabhushana A. K. Pati J. Postma N. Kameswara Rao K. Sankarasubramanian P. Sreekumar S. Sriram C. S. Stalin F. Sutaria Y. H. Sreedhar I. V. Barve C. Mondal S. Sahu

      More Details Abstract Fulltext PDF

      The performance of the ultraviolet telescope (UVIT) on-board AstroSat is reported. The performance in orbit is also compared with estimates made from the calibrations done on the ground. The sensitivity is found to be within ∼15% of the estimates, and the spatial resolution in the NUV is found to exceed significantly the design value of 1.8′′ and it is marginally better in the FUV. Images obtained from UVIT are presented to illustrate the details revealed by the high spatial resolution. The potential of multi-band observations in the ultraviolet with high spatial resolution is illustrated by some results.

    • Installation of solar chromospheric telescope at the Indian Astronomical Observatory, Merak

      B. RAVINDRA PRABHU KESAVAN K. C. THULASIDHAREN M. RAJALINGAM K. SAGAYANATHAN P. U. KAMATH NAMGYAL DORJEY ANGCHUK DORJEE P. M. M. KEMKAR TSEWANG DORJAI RAVINDER K. BANYAL

      More Details Abstract Fulltext PDF

      We report the observations of the solar chromosphere from a newly commissioned solar telescope at the incursion site near Pangong Tso lake in Merak (Leh/Ladakh). This new Hα telescope at the Merak site is identical to the Kodaikanal H$_{\alpha}$ telescope. The telescope was installed in the month of August 2017 at the Merak site. The telescope consists of a 20-cm doublet lens with additional re-imaging optics. A Lyot filter with 0.5 å passband isolates the Balmer line of the hydrogen spectra to make the observations of the solarchromosphere. The observations made in Hα wavelength delineates the magnetic field directions at the sunspot and the quiet regions. A CCD detector records the images of the chromosphere with a pixel resolution of 0.27$''$and covers 9.2$'$ field-of-view. This telescope has a good guiding system that keeps the FoV in the intended position. We report the development of control software for tuning the filter unit, control detector system, observations and calibration of the data to make it useful for the scientific community. Some preliminary results obtained from the Merak H$_{\alpha}$ telescope are also presented. This high altitude facility is a timely addition to regularly obtain H$_{\alpha}$ images around the globe.

    • In-orbit performance of UVIT over the past 5 years

      S. K. GHOSH P. JOSEPH A. KUMAR J. POSTMA C. S. STALIN A. SUBRAMANIAM S. N. TANDON I. V. BARVE A. DEVARAJ K. GEORGE V. GIRISH J. B. HUTCHINGS P. U. KAMATH S. KATHIRAVAN J. P. LANCELOT D. LEAHY P. K. MAHESH R. MOHAN S. NAGABHUSHANA A. K. PATI N. KAMESWARA RAO K. SANKARASUBRAMANIAN P. SREEKUMAR S. SRIRAM

      More Details Abstract Fulltext PDF

      Over the last 5 years, UVIT has completed observations of more than 500 proposals with $\sim$800 unique pointings. In addition, regular planned monitoring observations have been made and from their analysis various key parameters related to in orbit performance of UVIT have been quantified. The sensitivities of the UV channels have remained steady indicating no effect of potential molecular contamination confirming the adequacy of all the protocols implemented for avoiding contamination. The quality of the PSF through the years confirms adequacy of thermal control measures. The early calibrations obtained during the Performance Verification (PV) phase have been further revised for more subtle effects. These include flat fields and detector distortions with greater precision. The operations of UVIT have also evolved through inorbit experience, e.g. tweaking of operational sequencing, protocol for recovery from bright object detection (BOD) shutdowns, parameters for BOD thresholds, etc. Finally, some effects of charged particle hits on electronics led to optimised strategy for regular resetting. The Near-UV channel was lost in one of suchoperations. All the above in-orbit experiences are presented here.

    • Contamination control of UVIT

      S. KATHIRAVAN S. N. TANDON B. RAGHAVENDRA PRASAD S. SRIRAM A. PRADEEP T. VISHNU P. K. MAHESH P. U. KAMATH S. NAGABHUSHANA AMIT KUMAR

      More Details Abstract Fulltext PDF

      Ultra Violet Imaging Telescope (UVIT) is one of the 5 instruments on AstroSat satellite, which was launched on September 28, 2015. UVIT was designed to make images with a resolution of <1:8$''$, simultaneously in two ultraviolet channels: Far Ultraviolet (130–180 nm) and Near Ultraviolet (200–300 nm). Images are also made in visible region (320–550 nm) for tracking drifts in pointing. The shortest wavelengths to be observed with UVIT can be heavily absorbed by mono-molecular deposits/contamination on the optical surfaces.Keeping contamination under control in UVIT was a major challenge and it required a variety of actions: (i) strict control of the payload materials and process, (ii) mechanical configuration, (iii) baking of all the parts to release all the adsorbed molecules etc., (iv) assembly in ultra cleanrooms, (v) pre-inspection and auditing of all the areas, in which UVIT was placed, for any potential for contamination, (vi) continuous purging, with ultrapure nitrogen gas, till a few days before the launch, etc. In order to minimise any possible cross contaminationsfrom the other payloads/satellite, the doors of UVIT were opened 2 months after the launch. The high performance in the orbit and high stability of the sensitivity over 4 years in the orbit shows that the contamination was negligible. This paper presents the processes and protocols followed during the integration and testingphase to minimise the contamination in order to prevent any performance degradation.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.